f\l‘ n,..-. el

nnr FIE COPY ENESRER _

i, . K

o o2 uneering Institute

ekt

P
P
mreritesmam——
.'M
e et
e
r—-

VAXELN Experimentation:
Programming a Real-Time
Periodic Task Dispatcher Using
VAXELN Ada 1.1

¢
o N F:19¢2.885C0003
© P 2
S DG
<'I \ 4 4 0CT 2 4 988
T @ ®
: X 4 ¢ L
& ®
2 4 ¢
Y 4 o

| DISTIUBUTION ETATEMENT A 1

Approved foxr public
N Dstribution Unlimited

3§ 10 2a 439

=

Technical Report

CMU/SEL-87-TR-32
ESD-TR-87-195
November 1987

VAXELN Experimentation:
Programming a Real-Time Periodic
Task Dispatcher Using VAXELN Ada
1.1

Mark Borger

Ada Embedded Systems Testbed Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SE! Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Noe o f?é’w-‘,&\
Karl Shingler
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 by the Software Engineering Institute.

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and lechnical information for DoD personnel, DoD contractors and potential contractors, and other U S
Gavernment agency personnel and their contractors. To obtain a copy, please contact DTIC directty: Detense Technical
Information Center, Atin: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on
ordering, please contact NTIS directly: National Technical information Services, U.S. Department of Commerce,
Springfield, VA 22161

Ada is a registered rademark of the U.S. Government, Ada Joint Program Office. SD-Ada and VMX are registered
trademarks of Systems Designers plc. MicroVAX, MicroVMS, VAX, VAXELN, and VMS are trademarks of Digital
Equipment Corporation. VME is a rademark of Motorola Microsystems (trademark pending}

Table of Contents

Executive Summary
1. Background
2. Scope

1. Real-Time Perlodic Task Dispatcher
1.1. Motivation and Rationale

1.2. Top-Level Design
1.2.1. INS Data Types
1.2.2. Real-Time Clock Manager
1.2.3. Activation Queue Manager
1.2.4. Task Manager
1.2.5. Data and Control Fiow

2. Real-Time Task Dispatcher Prototyping
2.1. Schedulability Analysis

2.2. Periodic Task Dispatching Alternatives
2.2.1. General Purpose Queue Management
2.2.2. Static Queue Management

3. Results
3.1. Dispatching Techniques
3.2. Synchronization Mechanisms
3.3. Technical Observations

Reterences

Appendix A. INS Executive: Ada Source Code for SQM/Rendezvous
Dispatcher

A.a. KWV_Register_Definitions Package Specification
A.b. KWV_Register_Definitions Package Body

A.c. Real-Time Clock Manager Package Specification
A.d. Real-Time Clock Manager Package Body

A.e. INS Data Types Package Specification

A.f. Clock Interrupt Service Routine

A.g. Runtime BIT Package Specification

A.h. Runtime BIT Package Body

A.i. Motion Simulator Package Specification

A.j. Motion Simulator Package Body

A k. Comms Handler Package Specification

A.l. Comms Handler Package Body

A.m. Screen Area Handler Package Specification

A.n. Screen Area Handler Package Specification

A.o. Activation Queue Manager Package Specification
A.p. Activation Queue Manager Package Body

W0 oL bL WW N~ -

w

—_ ok A
—_ -t O

[O e
N O WW

R e

21
22
23
25
35
36
36
37
38
38
39
39
40
40
40
41

CMU/SEI-87-TR-32

’F

T 7T T e - T

A.q. Task Manager Package Specification
A.r. Task Manager Package Body
A.s. Main Program

4

SRS

CMU/SEI-87-TR-32

List of Figures
Figure 1-1: INS Executive Subsystem - Package Dependencies 4
Figure 1-2: INS Executive Subsystem - Data and Control Flow Diagram 7
Figure 3-1: General/Rendezvous and Static/Rendezvous Scaled CPU 15
Utilization
Figure 3-2: General/Semaphore and Static/Semaphore Scaled CPU 15
Utilization
Figure 3-3: Rendezvous Versus Semaphore Comparison 16
: Accession For 1
NTIS GRAAIL i
DTIC TAB 0
Unannounsed I}

Justification |

By H
| Distribution/
Avatlability Codes

~ jAvall and/or
Dist Special

Algs

t
!

i
t

CMU/SEI-87-TR-32

iv

CMU/SEI-87-TR-32

Table 3-3:

List of Tables

Table 2-1:
Table 2-2:

Table 3-1:

Table 3-2:

VAXELN Real-Time Measurements 9
INS Periodic Task Set - Execution Time and CPU Utilization 10
Estimates

General/Rendezvous and Static/Rendezvous Estimated CPU

Utilization

General/Semaphore and Static/Semaphore Estimated CPU 14
Utilization

Estimated CPU Utilizations and Schedulability Thresholds 16

CMU/SE!-87-TR-32

VAXELN Experimentation: Programming a Real-Time
Periodic Task Dispatcher Using VAXELN Ada 1.1

Abstract. The purpose of this paper is 1o provide the reader with some technical
information and observations, Ada source code, and measurement results based on
experimentation with respect 1o developing a real-time periodic task dispatcher in Ada.
The results presented here are specific to a uVAX-IZVAXELN 2.3 target system, the
VAXELN 1.1 Ada compiler, and a KWV11-C programmable real-time clock. Specifi-
cally, these results provide angwers to the question: How can one achieve the effect of
scheduling a set of periodic’ Ada tasks when the runtime frequency of some of the
individual tasks is less than the clock cycle frequency supported by an Ada runtime
implementation?

Executive Summary

\ 1. Background

" The Ada Embedded Systems Testbed Project’s investigative approach promotes three typical
stages to developing real-time systems: benchmarking; experimentation and prototyping; and de-
signing, coding, and testing an application. To study the performance characteristics of Ada
cross-compilers, we are running several existing benchmark test suite;}_q__gxphmne__t_imem,\“ ﬂ T }
space, and capacity constraints associated with individual Ada features.” To minimize program- | ~'~
ming risks such as those inherent in developing low-level device interfaces, we are performing %
evaluation experiments (i.e., prototyping) to explore programming alternatives available to an 1 T
application developer, implementation strategies employed by a compiler vendor, and real-time
ramifications with respect fo using Ada in these high risk areas. We are also designing and
implementing an application that is characteristic of real-time embedded systems. This appli-
cation system provides a context for using the experiment and benchmark results and will be the
primary vehicle for investigating the portability of Ada code across several target processors.

The intent of this experimentation was to investigate various programming afternatives available

to an application developer for writing a real-time periodic task dispatcher in Ada. The approach

was to design and prototype alternative versions of a task dispatcher for the inertial Navigation

System (INS) [INS Specification 87, INSP TLDD 87} simulator being developed by the project to -
support a detailed schedulability analysis of the INS periodic task set.

'in this context, a periodically scheduled task set implies that each task in the set is executed at its own fixed
frequency. A periodic task dispatcher is a software component that schedules the individual tasks at their implied runtime
frequency.

CMU/SEI-87-TR-32 1

2. Scope

For this particular target configuration and cross-compiler (VAXELN 2.3/VAXELN Ada 1.1), a total
of four different (prototype) periodic task dispatchers were developed. Two different periodic task
dispatching approaches were used; for each of these, two ditferent synchronization techniques
were used, namely, the Ada rendezvous and the VAXELN semaphore. This paper first discusses
the rationale for needing a real-time periodic task dispatcher and then presents the high-level
design from which the prototypes were developed. Next, the task dispatcher prototypes are
described in some detail, as is the experimentation approach used to test their feasibility. Finally,
the empirical results are presented and analyzed, and relevant technical observations are pro-
vided.

2 CMU/SEI-87-TR-32

1. Real-Time Periodic Task Dispatcher

The Ada tasking mechanism provides the real-time application programmer with a tacility to do
muiti-tasking. The decision to use Ada muli-tasking depends mainly on the scheduling require-
ments of the application. Real-time applications can be classified into three categories by their
inherent scheduling requirements {MacLaren 80]: (1) purely periodic scheduling with no aperiodic
events, (2) primarily cyclic with some aperiodic events and possible variations in computing loads,
and (3) event-driven (totally aperiodic) and no periodic scheduling. Common practice has been to
employ a cyclic executive for all three levels, but it has been shown that the benefits of Ada
mufti-tasking (e.g., supports aperiodic events, monitors intertask dependencies, controls task in-
teraction, and supports cyclic processing at arbitrary frequencies) can be realized with applica-
tions having scheduling requirements falling the latter two categories [MacLaren 80]. With Ada
multi-tasking, the runtime is responsible for scheduling tasks, whereas with a cyclic executive the
application programmer controls the scheduling.

The Inertial Navigation System simulator must not only schedule? periodic tasks for execution,
but also must handie the scheduling of aperiodic tasks.3 lts scheduling requirements therefore
1all into the second category above. As such, we decided to use Ada tasking wherever possible
to meet the application’s scheduling requirements. This chapter first motivates the need for a
real-time periodic task dispatcher executing on top of the Ada runtime system. It then presents a
high-levet description of the design of the INS executive subsystem that supports the scheduling
of the INS task set via the real-time task dispatcher.

1.1. Motivation and Rationale

One of the most important concerns for developing a real-time application is satisfying timing
requirements. The INS simulator has certain real-time requirements that it must meet:

1. scheduling periodic tasks at frequencies of 400, 25, 16, and 1 Hz;

2. providing a task time-out service that must notity waiting tasks after expiry of 10.24
ms; and

3. supporting a time stamp mechanism at a granularity of 2.56 ms.

The delay statement in Ada was designed to aid in satisfying timing deadlines. However, vali-
dated Ada compilers to date have impiemented the semantics of this statement by only ensusing
that the task that executes it will be suspended from further execution for at least the duration
specified, rather than supporting a guaranteed upper bound on the duration of time a task’s
execution will be suspended. To further aggravate this problem, the validated Ada compilers
investigated to date have at best supported a 10 ms clock cycle (SYSTEM.TICK). These issues
in combination with the INS simulator's requirement for a fine-grained (2.56 ms) notion of time
serve as the rationale for using a programmabile real-time clock and a real-time task dispatcher
on top of the Ada runtime system for supporting periodic task scheduling.

2We use the term “schedule” loosely in this report 10 mean that an Ada task has been marked ready to be scheduled
by the Ada runtime task scheduler.

3For example, the INS communication subsystem irregularly requests time-outs through an aperiodic task

CMU/SEI-87-TR-32 3

1.2. Top-Level Design

This section provides an overview of the INS simulator's executive subsystem design, which
serves as a prototype of the INS simulator's real-time task dispatcher. This subsystem consists
of three major components, namely a Real-Time Clock Manager, an Activation Queue Manager,
and a Task Manager, each of which is represented by one Ada package as shown in Figure 1-1.

INS Data
Types

Activation
Queue
Manager

Real-Time
Clock
Manager

Motion Runtime Communicatio
Simulator BIT Handler

Figure 1-1: INS Executive Subsystem - Package Dependencies

The rounded, unshaded rectangles in the figure represent Ada package specifications, whereas
the shaded one represents package bodies; the arrows indicate the dependency relationships (an
arrow from A to B implies that A depends on B). The three packages at the bottom of the
diagram are a subset of the packages that the executive imports from other INS subsystems to
gain visibility of the periodic tasks that are part ot the task set. The remaining packages con-
stitute the executive subsystem whose responsibilities include scheduling the periodic task set
and servicing time-out requests and canceliations. The following sections briefly describe each of
these packages.

1.2.1. INS Data Types

The INS Data Types package (see Appendix A.e) of the INS executive subsystem provides the
common data types used by the other packages. Specifically, it defines a data type for represent-
ing the executive’s notion of time (i.e., the number of ticks since program invocation).

1.2.2. Real-Time Clock Manager

The Real-Time Clock Manager component of the INS executive subsystem provides a set of Ada
interfaces 10 a KWV11-C programmable real-time clock [LSI-11 User's 86). This component con-
sists of one Ada package (see Appendix A.a — A.d} that provides the necessary data types,
procedures, functions, and exceptions for interfacing to multiple KWV11-C real-time clocks via
Ada application code [Clock TR 87]. These routines support all four modes of the clock’'s opera-
tion (Single Interval Interrupt, Repeated Interval Interrupts, External Event Timing Zero Base, and
External Evemt Timing Cumulative) in addition to its five different internal clock rates (1 MHz, 100

4 CMU/SEI-87-TR-32

KHz, 10 KHz, 1 KHz, 100 Hz). In addition to providing a mechanism for establishing a link
between clock interrupts and an Interrupt Service Routine (ISR), the Real-Time Clock Manager
supports typical programmable clock operations such as setting the clock’s operation mode (e.g.,
repeated interrupts), setting the clock frequency, enabling and disabling clock interrupts, and
programming the clock interrupt period.

1.2.3. Activation Queue Manager

The Activation Queue Manager component of the INS executive subsystem implements a single
time and priority ordered task activation queue. This component is represented in the design as
one package named Activation_Queue_Manager. The package specification (see Appendix
A.0, A.p) exports the necessary data types, procedures, and exceptions for accessing the ele-
ments of the time-priority ordered task activation queue. Specifically, the package specification
defines a data type that represents a task activation record (AR) so that the users of this package
can build such data objects. An AR contains the task’s name, activation period, activation time,
execution priority, and its activation mode (e.g., periodic, aperiodic). The Activation Queue Man-
ager supports typical queue operations such as inserting, fetching, deleting, and re-inserting for
activation records via the exported procedural interfaces.

The implementation details of the task activation queue are hidden in the package body. The
prototyping described in Chapter 2 presents the details of two different implementations of the
activation queue and its corresponding operations.

1.2.4. Task Manager

The Task Manager component of the INS executive subsystem provides a centralized task name
service for the entire INS simulator program in addition to supporting the operations of enabling,
disabling, and querying the schedulability status (e.g., enabled for activation) of periodic INS
tasks. it is represented in the design as one package named Task_Manager (see Appendix A.q,
Ar). The Task Manager also provides a mechanism for registering and canceling time-out re-
quests from the communications subsystem. The package specification exports an enumeration
type that contains an enumeration literal for each task in the INS task set. The package expors
subprograms to support the aforementioned operations on any of these tasks. Furthermore, the
package specification exports a procedure for initializing the INS task activation queue and one
for initializing the real-time clock and activating the Dispatcher task. Initializing the activation
queue involves inserting activation records for each of the pre-defined periodic tasks within the
INS. The process of programming the real-time clock involves setting up the mode, rate, and
Interrupt Service Routine. Finally, the Task Manager implements a real-time periodic task dis-
patcher on top of the task services provided by the Ada runtime using interrupts generated from a
real-time programmable clock.

To implement this task dispatcher, specific knowledge of the mapping between the task ID
enumeration literals and the actual Ada task names within the INS simulator program is located in
the package body. The Dispatcher task is a high priority Ada task within the INS simulator
program. Its body has a loop that attempts to dispatch a new task at every clock interrupt. Inside
the loop it first waits for the signal from the clock ISR indicating that an interrupt just occurred. It
then updates its notion of time, namely the current tick number, and then requests, from the
Activation_Queue_Manager, an AR of a task that should be scheduled at the current time.

CMU/SEI-87-TR-32 5

_i@

Finally, then, based on the activation mode of the task represented by the returned AR, it takes
appropriate action.

1.2.5. Data and Contro! Flow

A briet description of the data and control flow of the INS executive subsystem follows. This
discussion is relative to the data and control diagram appearing in Figure 1-2 and assumes a
VAXELN target system.

Step Description

1 Initialize the activation queue. Initializing the activation queue involves creating
new activation records for each of the pre-defined periodic tasks within the INS
and insenting those ARs into the activation queue. Depending on the activation
queue management approach, either an index for the just-inserted AR is returned
or the next tick number at which time a task needs to be scheduled is returned.

2 Program the real-time clock's settings. The process of programming the real-time
clock involves setting up the mode, rate, and Interrupt Service Routine. The asso-
ciation between the hardware interrupt and the Ada ISR must be established
through @ VAXELN service (CREATE_DEVICE); this kernel routine returns a de-
vice object tag back to the caller; as can be seen in the data/control diagram, this
information is passed back to the Activate Dispatcher subprogram.

3 Activate the task dispatcher and instruct the real-time clock to begin generating
interrupts. Prior to starting the real-time clock, the Dispatchertask is activated via
an Ada rendezvous from the Activate Dispatcher subprogram. The data passed
to the Dispatcher is precisely the device object returned from the
CREATE_DEVICE kemel service. The Dispatcher uses this data to properly syn-
chronize with the clock interrupts. Upon activation of the Dispatcher, the real-
time clock is started.

n Areal-time clock interrupt occurs. The VAXELN kernel transfers control to the ISR
associated with the clock interrupt.

n+1 The ISR signals the Dispatcher using the VAXELN Signal/Wait mechanism.
n+2 The Dispatcher fetches the next AR from the activation queue.

n+3 The Dispatcher, if necessary, activates the appropriate task for execution.
In Figure 1-2, rounded rectangles represent packages, rectangles correspond to individual sub-
programs in the body of the Task Manager, and parallelograms are Ada tasks. Note: The
Dispatchertask is in the body of the Task_Manager package.

A sample main program that initiates the executive subsystem is shown below.
with Task_ Manager:

procedure INS is
begin

Task_Manager.Initialize Activation_Queue;
Task_Manager.Activate Dispatcher;

end INS:

After this initiation sequence, the Dispatcher runs autonomously, being driven by the real-time
clock interrupts (step n) and continually performing steps N+1, n+2, and n+3.

6 CMU/SEI-87-TR-32

@ interrupt
—_—p| Service

Routine @

Activation

Queve
@ Manager
Activation
Queue
P o O
initialize_Activation_Queue
Legend

i ‘ Periodic
Activate_Dispatcher Task Data Flow o—#%

Contro! Fiow ——&

Figure 1-2: INS Executive Subsystem - Data and Control Flow Diagram

CMU/SEI-87-TR-32 7

8 CMU/SEI-87-TR-32

2. Real-Time Task Dispatcher Prototyping

To lessen the risks of implementing the INS simulator using Ada tasks, alternative prototype
versions of the real-time periodic task dispatcher were developed to assess the schedutability of
the INS periodic task set based on estimates of task execution times. This chapter presents the
results of this system modeling and analysis.

2.1. Schedulability Analysis

To assess the schedulability of the INS periodic task set, the following four-step approach was
taken.

Step 1 - Make real-time measurements

Prior to embarking on the modeling of the INS simulator tasking structure, it was essential to
understand the internal operation of the underlying VAXELN [VAXELN Release 86, VAXELN
User's 85] runtime executive. Key real-time measurements shown in Table 2-1 were either em-
pirically obtained or taken from the VAXELN performance documentation.

Event Time
Interrupt latency (VAXELN manual) 33 usec
Context switch (VAXELN manual) 150 usec
VAXELN signaliwait (empirical result, no process contention) | 285 usec
Ada rendezvous (empirical resuit) 1780 psec
Attitude and Heading calculations (empirical resutt) 450 psec

Table 2-1: VAXELN Real-Time Measurements

Step 2 - Estimate CPU utilization for task set

As a second step in the schedulability analysis, runtime estimates for each INS periodic task were
made; execution time and CPU utilization estimates for the INS task set appear in Table 2-2. The
execution time of the Aftitude Updater was empirically measured to be 0.45 ms, whereas the
runtime for the remaining periodic tasks was estimated. The overhead associated with each
periodic task represents the context-switching time for entering and leaving the task (2 context
switches = 0.30 ms); for the Aftitude Updater the overhead represents the sum of interrupt
latency and a context switch to the Dispatcher (0.03 + 0.15 = 0.18 ms). The synchronization
times associated with each periodic task is 1.48 ms, which is the measured Ada rendezvous
times less 0.30 ms for context switches; the 0.29 ms of synchronization time for the Attitude
Updater corresponds to the VAXELN Signal/Wait time (see Table 2-1). if the analysis is correct,
the implication is that only 15% of CPU time is available for the task dispatcher and background
processing.

CMU/SEI-87-TR-32 9

Execytion | Qverhesd | Synch Total |
Yask D Frequency | Execution | Overhead Synch | Utlization | Utilization | Utitizetion | Utilization
My | (ms) {ms) (me) (%) (%) {%) (%}
A 400 0.45 0.18 0.29 18.00 7.32 11.40 36.72
v 25 4 0.30 1,48 10.00 0.75 370 | 1445
18 10 0.30 1.48 16.00 0.48 237 1885 |
1 20 0.30 1.48 2.00 003 | 01§ 218
_Stawe Disoley 1 100) 148 10.00 0.03 015 10,18
1 5 . 148 0.50 003 0.15 0.68
08 25 030 | 148 1 200 002 0.12 2.14
Subiowis] 164.45 1.98 917 5850 | eec 1803 | 8519

Table 2-2: INS Periodic Task Set - Execution Time and CPU Utilization Estimates

Step 3 - Build INS tasking model

The next step of the analysis was the development of a skeletal INS tasking model. The control
logic of each periodic task was virtually the same: an autonomous loop containing first a
synchronization point at the top followed by code to perform the task's computation. For the sake
of modeling, the computational load of each periodic task was represented using a busy wait
mechanism whose variability was between 5 and 10 percent. For instance, the Velocity Updater
task was instrumented with a 4 ms busy wait (see Table 2-2). This busy wait was implemented
using an external subprogram call, and s basic unit of time measure was 100 us; the routine was
independently tested to be accurate to within 10%. To achieve the effect of varying the percent-
age of free CPU time, the duration of all of these busy wails was scalable using a global load
factor. For example, a global load tactor of 0.75 is equivalent o the duration of each task's busy
wait being 75% of its estimated value (0.75 * 4 ms = 3 ms for the Velocity Updater); a load factor
of 1.25 increases the duration of the waits to 125% of their estimated values.

Step 4 - Monitor missed deadlines

The final step of the analysis was to vary the global load factor and monitor the model behavior
with respect to missed deadlines. For each dispatching technique under investigation, the global
foad factor was continually increased by 0.05 (its fixed point delta) until a task deadline was
missed. This critical load factor value, termed the schedulability threshold, was empirically
determined for each dispatching altemative implemented. These periodic task dispatching
prototypes are described in the next section.

2.2. Periodic Task Dispatching Alternatives

Given the high leve! design abstraction for the Activation Queue Manager, described in Section
1.2.3, two different queue management approaches were implemented, each associated with its
own periodic task dispatcher. For each of these two different task dispatching prototypes, two
differemt synchronization techniques were employed, namely the Ada rendezvous and the
VAXELN semaphore. This section describes the two dispatching approaches, hereafter referred
to as the general-purpose queue management (GPQM) and the static gueue management (SQM)
approaches.

10 CMU/SEI-87-TR-32

2.2.1. General Purpose Queue Management

in the general-purpose queue management approach, the ordered activation queue is imple-
mented as an amray of indices into a table of existing activation records. Thus, the manipulation
(e.9., insertion, deletion) of the ARs in the queue essentially invoives the proper maintenance of
these indices and the AR table entries. For instance, inserting a new AR into the queue involves
creating a new entry in the AR table, locating the proper queue position of this new AR based on
its activation time and priority, and finally inserting its AR table index at the proper queue position
while at the same time relocating any other queue elements affected by the insertion. Deletion of
a specific element is similar in logic to insertion; however, at present, no mechanism is in place
for reclaiming space in the AR table when ARs are deleted. Fetching an AR, of course, removes
the element from the head of the ordered queue.

in this implementation, the task Dispatcher cails the Activation Queue Manager (AQM) every
clock tick (2.56 ms), passing it the current time (i.e., tick number). The AQM compares this time
to the activation time of the AR at the head of the queue (in this implementation, the first array
element); if the values are equal, then the first AR is retumed; otherwise, a null AR is returned.
When a non-null AR is returned (i.e., taken off the queue), its activation mode value is checked; if
it represents a periodic task, a new activation time is computed, and the AR gets updated within
the table and is re-inserted into the queue. It is possible that more than one AR meets the
activation time criteria specified in the Get_Activation_Record call; in such cases the first AR is
always returned since it is guaranteed to have the highest execution priority; the other qualifying
ARs have their activation times incremented by 1 tick and are re-inserted into the queue; how-
ever, the original schedule for the delayed tasks is maintained.

2.2.2. Static Queue Management

In the static queue management approach, the activation queue is implemented as a statically
sized amray of activation records. The ARs are never moved from their initial position in the array,
and one special array element is reserved for the AR of the Communications Controlier task,
which is called when a time-out has expired. In the purist sense, the data structure is not man-
aged as an ordered queue, but rather as an array of elements, of which one is always marked as
the next AR to be returned upon a fetch operation. In this scheme, the AQM maintains infor-
mation regarding the next task to be scheduled and when to schedule it by performing a linear
search of the array upon each insert and fetch operation. A benefit to this approach is that the
need for special processing to resolve scheduling conflicts is obviated by the linear searching
upon each fetch and insert operation, since the search implicitly resolves conflicts.

In this implementation, the task, Dispatcher calls the Activation Queue Manager only at the times
when tasks are scheduled to be activated. Upon each insert (e.g., time-out request) and fetch
(e-g., get next AR) operation, the AQM returns the next activation time. When an AR is retumed
(i.e., taken off the queue) to the Dispatcher, its aclivation mode value is checked by the AQM,; if
il represents a periodic task, a new activation time is computed, and the AR gets re-inserted into
the queue. To handle scheduling conflicts easily, the Dispatcher fetches ARs from the AQM
when the current time is either equal to (no conflicts) or past (a conflict has occurred) that time
specified by the AQM as the next time to schedule.

CMU/SEI-87-TR-32 1

e

1< CMU/SEI-87-TR-32

3. Results

Empirical results produced from the schedulabiiity analysis are presented in this chapter from two
different perspectives. First, a comparison of the two queue management approaches and their
associated task dispatching prototypes is made by analyzing their effects on total CPU utilization
when the synchronization mechanism is held fixed. Second, an analysis of the performance
ramifications of the two synchronization techniques, namely the Ada rendezvous and the
VAXELN semaphore, is done with respect to total CPU utitization. Finally, relevant technical
observations are provided.

3.1. Dispatching Techniques

Tables 3-1 and 3-2 show that the calculations performed by the Attitude Updater require 18%
CPU utilization and that the elapsed cycle time for the general-purpose queue management
(GPQM) task dispatcher is 0.10 ms (0.32 - 0.22 = 0.10 ms) slower than the looping time of the
static queue management (SQM) task dispatcher. These Dispatcher cycle times measure the
elapsed time (from when the Dispatcher is signaled by the ISR) of resetting the clock's interrupt
flag, updating the Dispatchers notion of time, and fetching the next AR. However, this cycle-
time measurement does not include the elapsed time for activating the next periodic task to be
scheduled since this time has already been accounted for as the synchronization overhead asso-
ciated with each periodic task. Note: These cycle times were empirically measured using a
programmabile real-time clock.

Given the minor difference (0.10 ms) between the GPQM and SQM elapsed dispatching loop
times, it is not surprising to find that their effective CPU utilization percentages differ by only 4%
(12.8 - 8.8 = 4.0 [Tables 3-1 and 3-2]) regardless of the synchronization mechanism employed to
schedule the periodic tasks. By adding in the corresponding context switching overhead (6%),
the total CPU utilization percentage for each dispatching technique can be obtained. Since only
one context switch, namely the one necessary to switch from the Dispatcher to another process
context, is recorded as dispatching overhead for either approach, the relative difference of their
total CPU utilization remains 4%. For instance, the difference in total CPU utilization percentage
between the GPQM and SQM techniques using VAXELN semaphores for synchronization is 4%
(97 - 93 = 4% [Table 3-2]). Comparing the Dispatcher segments of the two columns labeled
"Estimate (100%)" in either Figure 3-1 or Figure 3-2 illustrates this small ditference in total CPU
utilization percentages attributable to the change in dispatching methods.

The imputation of the synchronization and context switching overhead for the individual periodic
tasks depends on the synchronization mechanism in use. In the case of Ada rendezvous, 1.78
ms (2 context switches + synchronization time = 2 * 0.15 + 1.48 = 1.78 ms) of total synchroniza-
tion overhead is charged to each periodic task; for VAXELN semaphores, only the signaling time
of 0.28 ms is associated with the individual tasks since a context switch out the dispatcher has
already been counted.

CMU/SEI-87-TR-32 13

Utilizetion | Utilization
0 37
0 14
1 19
5 2
15 10
5 1
3 2
18.03 [11
N 0.00 19
213 917 71,30 14 38.03 104
tc/Rendezvou 400 0.22 0.15 0.00 8.80 8.00 0.00 As5
Yo 2.13 9.17 67.30 14.66 18.03 100

Table 3-1: General/Rendezvous and Static/Rendezvous Estimated CPU Utilization4

it is clear from inspecting Figure 3-1 that the estimated CPU utilization associated with both the
GPQM and SQM dispatching techniques, when using the Ada rendezvous for task synchroniza-
tion, is equal to or exceeds 100%; obviously in these cases, the INS task set would not be
schedulable without incurring missed deadlines. Nevertheless, empirically it is important to deter-
mine the critical point at which the task set becomes schedulable for each different dispatching
approach. The schedulabllity threshold represents this critical scheduling point and by its very
nature is expressed in terms of a percentage of the sum of the periodic tasks' estimated CPU
utilizations. For example, a schedulability threshold of 82% for the INS task set implies that the
tasks are schedulable {i.e., will not miss deadlines) for only up to, but not including, a periodic
task set CPU utilization level that is 82% of the original estimate (see Tables 3-1 and 3-2).

Execution | Overheed Total
Task D Frequency | Execution | Overhead Synch Utitization | Utilization | Utilization | Utilization
(Hz) (ms) _(ms) (ms) (%) (%) (%) %
Attitude Update] 400 .45 0.18 0.29 18.00 7.32 11.40 37
i o] 25 4 0.00 0.28 10.00 0.00 _0.70 11
Attitude 16 10 0.00 0.28 16.00 0.00 0.45 i6
Navigation Sender] 1 20 0.00 0.28 2.00 0.00 0,03 2
] Status Dispiay! 1 100 _0.00 0.28 10.00 0.00 0.03 10
Runtime BIT 1 5 0.00 0.28 0.50 0.00 0.03 1
Position tor} 0.8 25 0.00 0.28 2.00 0.00 0.02 2
Subtotsl 0.18 1.97 58.50 7.32 12.65 78
| __Cispatcher Mode
‘ 400 0.32 0.15 .00 12.80 6.00 0.00 19
T 9.33 1.97 71.30 13.32 12.65 97
___ﬁ:% 400 0.22 0.15 .00 8.0 .00 | 000 15
_0.33 1.97 €7.30 13.32 12.65 93

Table 3-2: General/Semaphore and Static/Semaphore Estimated CPU Utilization

4Since tasks under VAXELN Ada are implemented as separate processes, the process switching times in the table

coincide with Ada task switches

14

CMU/SEI-87-TR-32

Periodic Tasks
O Dispatcher

B Synchronization
3 Context Switch

Percent
CPU
Utilization

B Base Calculations

Estimate Scaled Estimate
(100%) (75%) (100%) (85%)

Figure 3-1: General/Rendezvous and Static/Rendezvous Scaled CPU Utilization

Since the amount of CPU utilization consumed by the periodic tasks varies directly with the value
of the global load factor, the corresponding "Periodic Tasks™ segments of the “"Estimate™ columns
in Figures 3-1 and 3-2 must be adjusted so that the entire CPU utilization is below 100%, thus
making the task set theoretically schedulable.

100.00
90.00 -
80.00 -
i Periodic Tasks
70.00
60.00 - O Dpispatcher
Percent
cPu 50.00 - | B Synchronization
Utilization 459 - E3 Context Switch
30.00 4 B Base Calculations
20.00 A
10.00 <
0.00 +

GPOMS GPOWS SQMS saws
Estimate Scaled Estimate Scaled
(100%) (100%) (100%) (110%)

Figure 3-2: General/Semaphore and Static/Semaphore Scaled CPU Utilization

CMU/SEI-87-TR-32 15

pugmg tng Zuman

For example, the schedulability threshold tor the GPQM Dispatcher using Ada rendezvous for
task synchronization is 75%. One can observe from the first two columns of the bar chart in
Figure 3-1 that the "Periodic Task" segment shrinks 1o 75% of its original size 1o reach a total
CPU utilization level under 100%. The schedulability thresholds can be read from Figures 3-1
and 3-2 and are summarized in Table 3-3.

tcher | _Periodic Jotal hedulabilit

I W T T T e

%1 __ 4 (%] 1 (%] | (%) 1 (%) |
18.00 14.66 18.03 12.80 40.50 104 78
3 13,16 12.65 12.80 40.50 97 100
18.00 14. 18.0% $.80 40,50 100 TR
18.00 1318 12.65) _40.50 | 93 110

Table 3-3: Estimated CPU Utilizations and Schedulability Threshoids

Interpretation of the schedulability threshold data in Table 3-3 indicates that, assuming the same
synchronization mechanism, changing from the GPQM Dispatcher to the SQM Dispatcher
yields a 10% (85 - 75 = 110 - 100 = 10%) increase in the schedulability threshold.

120.00

Periodic Tasks
O Dispatcher

B Synchronization

Percent
cPU

ilizati
Utilization BJ Context Switch

. B Base Calculations

KOO

LA
020,09
000 el

“l"

Estimate Estimate Estimate Estimate

Figure 3-3: Rendezvous Versus Semaphore Comparison

3.2. Synchronization Mechanisms

The difference in total CPU utilization (computed from the data in Tables 3-1 and 3-2) when
varying the synchronization mechanism used by the Dispatcher is 7%. Specifically, for the
GPQM Dispatcher, a change in its synchronization mechanism from the Ada rendezvous to a
VAXELN semaphore results in a 7% (104 - 97 = 7%) savings in CPU utilization; for the SOM
Dispatcher, this savings is equal to 7% (100 - 93 = 7%). This implies that using VAXELN
semaphores for task synchronization uses roughly 7% less CPU time than Ada rendezvous for
this real-time periodic task dispatcher application.

Since the (estimated) execution times of both the INS simulator's base calculations and periodic

16 CMU/SEI-87-TR-32

tasks are constant, Table 3-3 can be used 1o illustrate the implications of the synchronization
mechanism employed for scheduling the periodic tasks on total CPU. The bar charl (generated
from this data) in Figure 3-3 clearly llustrates the pervasive effect of the Ada rendezvous on the
percent of context switch, synchronization, and dispatching CPU utilization.

Finally, interpretation of the schedulability threshold data in Table 3-3 indicates that, assuming the
same dispatching approach is being used, a 25% (100 - 75 = 110 - 85 = 25%) increase in the
schedulability threshold results ¥f the synchronization mechanism is changed from the Ada ren-
dezvous to a VAXELN semaphore. Furthermore, a 35% improvement in the schedulability
threshold is obtained when changing from the GPQM Dispatcher and the Ada rendezvous for
synchronization to the SOM and VAXELN semaphores.

3.3. Technical Observations

The total estimated CPU utilization for the interrupt Service Routine and the periodic task, without
including the empirical results for the Dispatchers utilization, is quite high. In the case of using
Ada rendezvous for synchronization, it is 85%, and similarly for VAXELN semaphores, it totals
78%. R is clear from the tables in Tables 3-1 and 3-2 that a savings of 11% CPU utilization would
be gained if the synchronization between the ISR and the Dispatcher could be eliminated. Quite
simply this could be done by moving Dispatcher responsibilities into the ISR. In practice, how-
ever, this was not possible since numerous VAXELN Ada ISR restrictions limited the number of
Dispatcher implementation alternatives. These ISR restrictions disallow tasking operations,
input/output operations, and accessing variables not in the immediate scope of the ISR, and
strongly recommend against making subprogram calis external to the ISR.

The empirical results illustrate the pervasive effect of the Ada rendezvous on the schedulability of
the INS task set. Using the Ada rendezvous for synchronizing between the Dispatcher and the
periodic tasks rather than VAXELN semaphores, regardiess of the dispatching technique
employed, results in an increase in total CPU utilization of 7%. Furthermore, for both dispatching
methods implemented, given the original execution time estimates for the INS periodic tasks,
using the Ada rendezvous as the synchronization mechanism results in missed task deadlines.
Only when these estimates are scaled by 75% and 85% tor the GPQM and SQM dispatching
approaches, respectively, does the task set become schedulable assuming Ada rendezvous for
task synchronization.

Interpretation of the schedulability threshold data in Table 3-3 further demonstrates the impact of
the Ada rendezvous on the task set schedulability. The empirical results show that, assuming the
same dispatching approach is being used, a 25% increase in the schedulability threshold results
if the synchronization mechanism is changed from the Ada rendezvous to a VAXELN semaphore;
moreover, a 35% improvement in the schedulability threshold is obtained when changing from the
GPQM Dispatcher and the Ada rendezvous for synchronization to the SOM and VAXELN
semaphores.

Based on real-time scheduling theory, the optimal rate-monotonic scheduling algorithm [Lui 73]
guarantees schedulability of the INS task set for a processor utilization below 70% since the
individual periodic tasks priorities are assigned in direct proportion to their execution frequencies.

CMU/SEI-87-TR-32 17

However, since the INS task set CPU utilization is greater than 70%, another schedulability test
based on the rate-monotonic algorithm, namely task-lumping [Sha 87), was necessary to cal-
culate the theoretically expected schedulability thresholds. The schedulability thresholds deter-
mined empirically were consistent with those computed theoretically. For example, given the
original execution time estimates for the INS periodic tasks, the SQM dispatching approach using
VAXELN semaphore for task synchronization yielded a total CPU utilization level of 93%. Fur-
thermore, it was found empirically that the task set was schedulable until the original time es-
timates of the periodic tasks were scaled by 1.1 or until the total CPU utilization level reached
97% (ISR + Scaled Periodic Tasks + Dispatcher = 37 + 1.1 * 41 + 15 = 97.1%). Simitarly, solving
for the schedulability threshoid using the task-lumping method results in an expected threshold
value of 1.12.

18 CMU/SEI-87-TR-32

References

[Clock TR 87] Borger, M.W.
VAXELN Experimentation: Programming a Real-Time Clock and Interrupt
Handling Using VAXELN Ada 1.1.
Technical Report CMU/SEI-87-TR-29, Software Engineering Institute, October,
1987.

[INS Specification 87)
Landherr, S.F., and Klein, M.H.
INS Behavioral Specification.
Technical Report CMU/SEI-87-TR-33, Software Engineering Institute, June,
1987.

[INSP TLDD 87] Klein, M.H., Landherr, S.F.
INS Simulator Program: Top-Level Design.
Technical Report CMU/SE!I-87-TR-34, Software Engineering Institute, July,
1987.

[LSI-11 User's 86] LS!I-11 Analog System Users’ Guide
Digital Equipment Corporation, Maynard, MA, 1986.

[Lui 73] Liy, C.L., Layland, J.W.
Scheduling Algonithms for Mutti-programming in a Hard-Real-Time.
JACM 20(1):46-61, January, 1973.

[MacLaren80] Maclaren, Lee.
Evolving Toward Ada in Real-Time Systems.
In Proceedings of the ACM-Sigplan Symposium on the Ada Programmng
Language. November, 1980.

[Sha 87) Sha, L., Lehoczky, J.P., and Rajkumar, R.
A Schedulability Test for Rate-Monotonic Priority Assignment.
Computer Science Department ART Project, Carnegie Mellon University, July,
1987

[VAXELN Release 86)
VAXELN Ada 1.1 Release Notes
Digital Equipment Corporation, Maynard, MA, 1986.

[VAXELN User’s 85]
VAXELN User's Guide.
Digital Equipment Corporation, Maynard, MA, 1985.

CMU/SEI-87-TR-32 19

20

CMU/SE!-87-TR-32

Appendix A: INS Executive: Ada Source Code for
SQM/Rendezvous Dispatcher

A.a. KWV_Register_Definitions Package Specification

o os s #s ee a8 ey s

-=- Target Machine:

seseccccccsaas SEI Ada Embedded Systems Project Prologue --—---=--c--aeo-
=~ Unit name TNV_Ragister_Definiticns package specification

-~ Rzperiment § : PAOL

-~ Version 1.0

== Author Mark W. Borger
-- Date created : 20 Feb 1987
-= Last update 12 Max 1987

-- Nost Machine : VAX/VMS 4.5

VAXELN 2.3

== 12 Mar 97 1.0

Mark W. Borger

with SYSTEM:
with VAXELM SERVICES:

Qo H
mode H
rate H
int_ovf
ovf_flsg :
maint_stl H
maint_st2 :
maint_osec H
dio
flag_overrun
#t2_go_enable
st2_int_enable
st2_flag

end recoxd:

06 et ae sa ee

for TUV_CSR_RECORD

Ead of Prologue

use SYSTEM:

BOOLEAN;

package XWV_Register Definitions is

type KMV_CSR_RECORD is record

UNSIGNED 2; --
UNSIGNED 3; --

: BOOLEAN:

go at O range
mode st 0 range
rate at 0 range
iat_ove at 0 range
ovf_flag at O range
maint_stl at 0 range
maint_et2 at 0 renge
maint_osc at O range
dieo at 0 zange
flag_overrun at 0 range

«= Abstract : This package specification provides the necessary
eerresccecscees] data types to access the Control Status and Buffer
Rt Registers of & KMV11-C real-time programmable clock.
- Revision History

== Date Version Author Ristory

Aded prologue

=~ KNV11-C Control Status Register layout

start the countar

mode of operstion

clock rate

interrupt on overflow

counter overflow occurred

simulate firing of etl

simulate firing of st2

simulate one cy. of osc

disable internal cecillator

true if ovf occurs with ovf flag still sat
assertion of st2 flag sets go bit
sssertion of st2_flag causes an interrupt
start interrupt requast for st2

CMU/SEI-87-TR-32

21

N\

je

A.

st2_go ensble at 0 range 13..13;

ot2_int_emsble at 0 reage 14..14;

ot2_flag at 0 seage 15..15;
end zecuxd;

for FNV_CSR_RECORD'SILE use 1§:

«= PIVil~-C suffer/Preset Bagister layout

subtype KNV_BFR_TYPE is VAXRLN SERVICES.ENV_COUNTER TYIE:

————— - ———

~= BRecoxrd type containing the FNV1l-C’s CSA and Buffer/Preset Register

type FTWW_REGISTERS is record
CSR : KNV_CSR_RECORD: -~ ocontrol/status register
BPR : FMV_BPR_TYPE; ~- buffar/preset register
end recosd;
pragma PACK(KNV_REGISTERS) ;

procedure Put_CSR (C3R : in KV_CSR Record:
Register_Address : in ADDRESS);

function Get_CSR (Registar_Address : in ADDRESS) return FWV_CSR_Record;

end KWV_Register_ Definitions;

b. KWV_Register_Definitions Package Body

- -

meccemccenc—es SEI Ada Bmbedded Systems Project Prologue ----v---eecoewn-
-- Unit nase V_Register Definitions package body

-- Experiment § : PAO]1

-~ Version 1.0

se se ke se ve we

Author Mark ¥. Borger
Date crested : 23 Mar 1987

-- Last update :
Host Machine : VAX/VNS 4.5

Target Machine: VAXELN 2.3

-= Abstract : This package body provides the necesssry interface

------ c—cew-w=: for reading and writing the KNV11-C’s CSK.

Revision Bistory

Dste Version Autbor Ketory

End of Prologue

with UNCEECKED CONVERSION:

package body KW_Register_Definitiocus is

function Convert_It is new UNCEKECKED CONVERSION (KWV_CSR_Record, OWSIGNED_WORD) :
function Convert_iIt is nev UNCHECKED CONVERSION (UNSIGNED WORD, KMV_CSR_Record):

procedure Put_CSR (CSR : in KNV _CSR_Record:

22

CMU/SEI-87-TR-32

(4]

4

Sagistes_Address : in ADDSESS) is

Cuxzent CSR ¢ UNSIQNED_WORD;:
ﬂlM@.‘ mm
Mﬂlw“nl‘gﬂu&m -

begin .
Current CSR := Comwert It (CSR):
WRITSE_REGISTER (Current CSR, CSR Unsigned):

end Fut_CSR;

function Get_CSR (Register_Addrese : in ADDRESS)
return KWV_CS2 Becoxd is

csR : KW_CSR_Recoxd:
Current_CSRA : UWSIGNED WORD:
CSR_Unsigned : UNSIGNED WORD:

for CSR_OUnsigned use at Begister Address;
begin
Current _CSR :« READ REGISTER (CSR_Unsigned):
CsR = Connxt _It (Curzent_CSR):

seturn CSR;
end Get_CSR;

end KNV_Register_Definitions;

A.c. Real-Time Clock Manager Package Specification

-— —

meevsereeao ~== SEI Ada Embedded Systems Project Prologue ----r-rac-co-u-

== Unit name KV1l_Clock Manager -
-- Rzxperiment § : PAOL

-~ Version 1.0

~= Autbhor

-—

~~ Date areated : 17 Mar 1987
~- Last update : 16 Mar 1987

Mark W. Borger

o se e se s

~= Nost Machine : VAX/VMS 4.5 -
«= Target Machine: VAXRIN 2.3

-— -—

~= Abstract : This package specification provides the necessary
wemecmesccscca—e; data types, proosdures, functions, and exceptionas

: for intexfacing to multiple FV11-C real-time clocks
(Q-bus device) via Ada application code. All four modes
of the clock’'s operation are supported in addition to
its five different internal clock rates. To use these
: routines one must first invoke the Initialize procedure
T teo te a clock device cbject and get a clock ideatifier.
This device object can be used by the application to wait
on & devioe signal from an Interrupt Service Routine; the
clod 1d is used as a key for the ramainder of the package’s

£ . The Initialization exoception is raised if
mmmmau cbject csnnot be created for -
what . The Clock _Noet_Initialized exception is

Af & specified clock id ia inwvalid,

These routines only support counter overflow interrupts
and mot Schaitt trigger intarrupte. The counter routines
{Start_Countiag, Read _Couater, Stop_Counting) should only
b.udlnmd‘l“hoo:“!hm when used in any
mode, tha Invalid cloek Mode cuptlon will be raised,

CMU/SEI-87-TR-32 23

Revision Eistory

-~ Date Versioa Author Bistory
-~ 10 Mar 07 1.0 Mark W. Bezxger Mdded Display CSR procedure.
-~ 22 Max 87 1.0 Merk W. Bozger Added Iavslid Clock Mode Qxaption.

Ead of Prologue

with VAXEZLM SERVICES:
with COMDITION NANDLING:
with SYSTRM;

peckage JNV11_Clock Menager is

P

-= Data types imported from SYSTEM package

-uu,p. COND_VALUR_TYPE is COMDITION NAMDLING,COMD_VALUE TYPE:

———————————

-~ Data types imported from VAXELN_SERVICES peckage

subtype DEVICE_TYPE is VAXIIM SERVICES.DEVICR TYPE;
.ubtmmmlﬂ’l uvnm.-umenmemnm:
subtype VECTOR_NUMBEIR _TYPE is thnl SERVICES. VIC!‘OI WOMBER _TYPE;

- Local Data typee

e]

type Clock_ID is private:
type Clock Mode is (Mode_Zero, Mode_One, Mode Two, Mode_Three):

for Clock_Mode use (Mode fero => 0, Mode_One a> 1,
Mode_Two => 2, Node_Three => 3);

type Clock_Rate is (stop, Sate_1MHI, Rate_100KHZ,
Pate_10KHI, Bate_lKHZ, Rate_lOO0HZ):

for Clock _Rate use (Stop o> 0, Rate_ LI => 1,
Bate_lOOKHZ => 2, Rate_lOKH => 3,
Rats_lKHZ => 4, Rate_l00EX => S):

procedure Initialize (Clock Name : in STRING:
Clock_: Identifier : out Clock_3XD;
Mode : in Clock_Wodse;
Rate : in Clock_Rate;
Vector Number : in VECTOR WOMBER_TYPZ:
Service_Routine : in ADDRESS:
CSR_Address : out ADDRISS:
Device_Object : out DEVICE TYPE):

procedure Re_Initislize (Clock_Identifier : im Clock ID;
Mode : in Clock Mode:
Rate : in Clock_Rate):

procedure Display CSR {Clock _Identifier
procedure Enable_Interrupte (Clock_Idantifier
procedure Disable _Interrupts (Clock_Identifier
P d - te_Interrupts (Clock Identifier
procedure Reset _Interrupt Flag (Clock Ideatifier
procedure Reset Ovarrun_Flag (Cloeck_: nh.tiﬂc is Clock ID):
P d l‘t_’ t upt_Period (Clock_: Id‘ntltltr ia Cloek_!b:

Period : im KWV_COUNTER Type)/

in Cloak_ID);
in Cloek_ID);
ia Clock_ID);
in Clock_1ID);
ia Cloak_ID);

26 se B0 0 ws as s

procedure Start Counting (Clock_ldestifier : in Clock_ID):
procedure Resd Counter (Clock_lIdentifier : in Clock_ID;

24

CMU/SEI-87-TR-32

[N Y N VO I S I

[

»

Sumber_Of Ticks : out KNV_COUNTER Type):
peocedure Stop_Cousting (Clock_ldentifier : im Clock_ID;
Sumber Of Ticke : out KNV_COUMTER Type):

L functien Interrwpte_Ensbled (Clock Idestifier : im Clock_ID) return BOOLEAN;
function Curzeat Mode (Clock ldantifier : in Clock_ID) retura Clock Mode:
funatica Currest Rate (Clock Identifiexr : in Clock ID) return Clock Rate;
functioa Isterzupt Period (Clock_Idemtifier : in Clock_ID) returm FMV_COUNTER Type;
function Interzupt Flag On (Clock ldentifiex : in Clock_ ID) return BOOLEAN:
function Overzum Flag _On (Clock _Identifier : im Clock_ID) return BOOLRAM;
Isvalid_Clock Mode : EXCEFTION;

Iaitialisation Rrror : EXCEPTION;
Clock_Mot_Iaitialized : EXCEPTION:
privsate

subtype Clock ID Bange is WATURAL range 0..31;
type Clock_ID is new Clock_ID Range;

end KWV1l_Clock Manager;

A.d. Real-Time Clock Manager Package Body

B ~== SEI Ada Embedded Systems Project Prologue --=vw--cermce-~e
~= Unit pame : KWV1l_Clock_Manager package body

-- Expeziment § : PAOL

-- Varsion 1.0

== Author : Mark W. Boxger
-- Date created : 17 Mar 1987

-- Last update :

-- Bost Machine : VAX/VMS 4.5

== Target Machine: VAXELN 2.3

-= Abstzact : This package body implements the subprograms of ite
swess——ceccw-e-c: spacification., It maintains a Clock_ID array containing
meevcccccereasan : the corresponding clock’s CSR address to allow for the

mmemeemcewer---=e: control of multiple clocks.

Revision Bistory

== Date Varsion Authox Bistoxy
== 22 Mar 87 1.0 Mazk W. Borger Added data structure to contain
- Mode and Rate for each Clock_ID.

End of Prologue -——

package body TWV1l_Clock Manager is

-- Loaal Data types
type Clock Information Record is record
fate : Clock Rate;
Mode : Clock Mode:
end record;
typs Clock_Iafo Array Type is array(Clock_ID) of Clock_Information Record:;
Clock_Iafo : Clock Info Array Type := (others => (Stop, Mode_terc)):;

type Clock Array_Type is array(Clock_ID) of ADDRESS;
Clock _Arzey : Clock Array Type := (others => ADDRESS_SERO) ;

Current Clock Mumber : Clock_ID := Clock_ID’FIRST: _'ﬂ

CMU/SEI-87-TR-32 25

procedure Iaitialise (Clock Neme

procedure

Clogk_Identifier
Mode

Rate
Vector_Wamber
Servics_Routine
csR_Address
Device_Object

Re_Initialize (Clock Idenmtifier
tode
Rate
Display_csa (Clock_Identifier
Enable_Interzupts (Clock_ldentifier

Disable_Interrupts (Clock_Identifier

Sat_Interrupt Period (Clock Ideantifier
Pericd

procedure

procedure

procedure

procedure

function Ioterrupts Enabled (Clock Identifier

FEE
gee

- te_lnterrupts (Clock ldentifier :

Raset Interrupt_Flag (Clock_ Identifier

Raset Overrun Flag (Clock_Identifier

Start Counting (Clock_Identifier

Read_Counter (Clock_Identifier
Bumber Of Ticks

Stop_Counting (Clock_ldentifier :
Wwumber_Of_Ticka :

.

return BOOLEAN is separate;

function Current_Mode (Clock_Identifier :
return Clock_Mode is separate;

function Current Rate (Clock ldestifier :
return Clock_Rate is separate;

function
return

function

Interrupt_Flag On (Clock_ldentifier

Interrupt_Period {Clock_lIdentifiexr :
KNV_COUNTRR_TYPE is separate;

return BOOLEAN is separate;

fanction Overrun _Flag Om (Clock_Tdentifiexr :
return BOOLEAM is seperate:;

end KWV11l_Clock Manager:

out

in

in

in

ia

in

in

in

in

Clock_ID) is separste;
Clock_ID) is separate;
Clock_ID) is separate;

Clock_1ID;
KWV_COUNTER TYPE) is separata;

Clock_ID) is separate;
Clock_ID) is separate;

Clock_ID) is separate;

Clock_1ID) is separate;

Clock_ID:
KHV_COUNTER _TYPE) is separate;

Clock_ID;
BV_COUNTER_TYPL) is saeparate;

Cleck_ID)

Clock_ID)

Clock_ID)

Clock_ID)

Clock_ID)

Clock_ID)

initialize procedure

with DNCEECKED CONVERSION;
SERVICES: use VAXILN SERVICES:

with VAXELN

with XWV_Registesr Definiticas:

separate (fNVil_Clock _Manager)

procedure Initislisze (Clock Mame

in STRING;
out Clock_1ID;
in Clock_Mode;

Clock Identifier
Mode

use m_u;tatc_wtutlou:

26

CMU/SEI-87-TR-32

: 4n Clock_Rate;
: in VECTOR WOMBER_TYPE:
Sexvice Routine : iz ADDRES:

out ADDRESS
out DEVICE TPt) ie

Current_ CSR ; SHV_CS%_Becoxd;
Timezr_Devies : DRVICE_ARRAY_TYPR(0..0) := (othexs => 0):

funaction Couvert It is sew UNCEECKED_CONVERSION (Clock Mode, TMEIGNED 2):
function Comvert It is new UNCEECKRD_CONVERSION (Clock Rate, UMSIGNED_3):

begin
~- Create the JNV11-C device object and associate with its interrupts the
~-~ ZInterrupt Sexvioce Routine.

-

Create_Device (Status => Return_Code,
Device Name => Clock_Mame,
Vector_Wumber => Vector_Number,
. Sarvice_Routine => Service Routine,
Registess => KNV11l CSR_Address,
Device_Arsey Timer_Device,

->
Devioce_Count > 1);

4f CONDITION NANDLING.Sucosas (Return_Code) then
Devios_Object i@ Timer Device(0):
Clock_Identifiexr e C _Clock_Number;
C CSR_Address te KV11l_CSR_Address:
Clock Array(Current_ Clock Mumber) := KNV1l_CSER Addreas:
Clock_Iafe t_Clock Wumber) := Clock_Information_Record’ (Rate, Mode):
Curreat_Clock_Sumber := Current_Clock Wumber + Clock ID(1):

e L T

-= Initialise clock wvia CSA settings

Current CSR := KWV_CSR Recoxd’ (

[go => FALSE,
mode => Convert_ It (Mode),
rate => Convert_It (Rate),

othars => FALSE);
Put_CSR(Curreat CSR, KMV1l CSR_Address):
else
raige Initialiszation_Error;
end if;

‘ end Initielise:;

Re_Initlalize procedure
C with UNCEECKED CONVERSION:
with VAXELN SERVICES; use VAXELN SERVICES:
with KNV_Register Definitions: use FWV_Register Definitions:

separste (KWV11_Clock _Mansger)
procedure Re Initialize (Clock_Idestifier : in Clock ID;

Mode : in Clock_Mode;
Rate : i{n Clock Rete) is

Current CSR : KNV_CSR_Becord := 3et_CSR(Clock Array(Clock Identifier)):

function Ccavert_It ie mew UNCERCKED_CONVERSION (Clock_Mode, UMSIGNED_2):
function Couvert_It is sew UWCEECKED CONVERSION(Clock Rate, UMSIGWED 3):

begin

C == If specified clock’s CSR address is non-sero (i.s., the clock exists ﬂ
~- and has been initialised) then re-initislisze it by clesring the CSR 7
== eettings:; otherwise raise an exception eince the specified clock has

CMU/SEI-87-TR-32 27

L5 e

-

~= @sot been iaitislised properly.

if Clock_Array(Clock_Identifiex) /= ADDRESS_SERO then

Curreat_CBR i« KIW_CSR Record’ (go => FALSE,
uode > Convert it (Mode).
Tate => Comvert_ It (Rate),
others => FALSE):
Put_CSR (Curzent_CSR, Clock Axxay(Clock_Idemtifier));
Clock_Info (Clock_Identifier) := Clock_Infozmation Record’ (Rate,Mode);
alse
zaise Clock Not_Imitislised;
ond if;

end Re_Initialise;

Display_CSR procedure

with TEXT_I0; use TEXT_XO:
with BV _Register Definitions: use KWV_Register_ Definitions;
with UNCHECKRD_ CONVRRSION;

saparste (W1l _Clock Manager)

procedure Displsy CSR (Clock _Identifier : iz Clock ID) 4s
Current CSR : KMV_CSR_Record := Get_CSR(Clock Array(Clock Identifier)):

psckage Rate_x0 18 new ENUMERATION IO{Clock Rate): .
peckage Mode_10 is new ENUMERATION 10(Clock Mode):
package BOOLEAR IO is hew ENUMERATION IO (BOOLEAN);

function Convert It is pew UNCKECKED COMVERSION (UNSIQNED_2, Clock_Mode):
functioa Qon'.tt It is nevw UNCKECKED cawzuxou(wum 3. Clock_Rats);

procedure Yormatted _string Put (Str : in STRING) is
begin

Put (stx);

Set_Col (20);

Put (® => *);
end Formatted String_Put:

—mmmee—e—-

-- If specified clock’s CSR address is non-zero (i.e., the clock axists
-~ and bas been initialized) then display contente of CSR:
-- otherwise raise an exception since the specified clock has
«= pot been initialized properly.
if Clock Array(Clock ldeatifiesr) /= ADDRZSS_SERO then
Formatted_String_Put ("CSR.ge*);
BOOLEAN_IO.Put (Currant_CSR.Qo): Mev_Line;

Formatted_string Put ("CSR.mode”);
Mode_IO.Put (Comvert It (Curreat _CSR.mode)): MNew_Line:

Tormatted String Put (“CSR.xate”);
fate_IO. Put (Coavert It (Curremt CSi.rate)): MNew_Line:

Formatted String Put (“CSk.ist_ovf“);
BOOLEAN_IO.Put (Current_CSR.int_ovf); New Line;

Formatted String Put (“CSR.ovf_flag”):
SOOLEAN IO.Put (Current CSR.ovf flag): Rew_Line:

Formatted_String Put ("CSR.maint _stl®):
BOOLEAN_IO.Put (Curreat CSR. maint ._otl): Bew_Live;

Formatted String Put (“CSR.maint_st2°);
BOOLEAN_I0.Put (Current CSR.maint_st2): New Line;

Formatted String Put (“CSR.maint_osec”):

28

CMU/SEI-87-TR-32

BOOLEAN_IO.Put (Current COR.maint_osc): Bew_Lise;

Termatted_striag Put (“CSh.dioc"):
SOOLEAN_I0.Put {Curzent CSR.dio); New_Lime;

Tozmatted Striag Put ("CSR.flag overrun®);
BOOIRAN_TO.Put (Currest CSA.flag_overrun); UNew_Line;

Tormatted_string Put (“CSR.st2_go_ensble®):
BOOLEAN IO0.Put (w__m. st2_go_enable) ; New_Line;

FPoruatted String Put ("CSR.et2_int_emable”);
BOOLEAN_Z0.Put (Current CSR.st2_int_enable); WNew_Line;

Formatted String Put ("CSR.st2_flag”):
SOOLEAM_IO.fut (Current CSN.st2_flag): New_Line;

else
raise Clock Not_Initialized:
end if;

end Display_CSR:

Enable_Interrupts procedure

with KNV_Register Definitions; use IfV_Register_Definitions:
separate (XWV1l_Clock Manager)
procedure Enable_Interrupts (Clock Identifier : in Clock _ID) is

Current _CSR : KWV_CSR_Record := Get_CSR(Clock Array(Clock_Ideatifier)):

== If specified clock’s CSR address is non-zero (i.e., the clock exists
-=- and has been initialized) then enable interrupts on counter overflow;
-= othezwise raise an exception since the specified clock has
== not been initialized properly.
1f Clock Array(Clock_ Idestifier) /= ADDRESS_LERO then
Current_CSR.int_ovf := TRUE;
Put_CsSh(Curreat CSR, Clock Array (Clock_Identifier)):
alse
raise Clock Wot_Initialised;
end if;

end Ensble_Interrupts:

Disable_interrupts procedure
with KWV_Register_Definitions; use KWV_Register Definitions:

separate (KWV1l_Clock_Manager)
procedure Disable Iaterrupts (Clock_Identifier : in Clock_ID) is
Current_CSR : KWV_CSR_Record := M_c:l(clock__m-y(clock_xdontu’io:));

begin
== 1f specified clock’s CSR addrese is non-sero (i.e., the clock exists
== and has bean initialised) then disable imterruptse on ter overflow:
== othexwise ruise an exception eince the specified clock has
-~ ot bean initialiszed properly.
1f Clock_Arrsy(Clock_Ideatifier) /= ADDRESS_SERO then
Current CSR.int_ovf :« FALSEK:
Put_CSR(Current CSR, Clock Array (Clock_Identifier)):

CMU/SEI-87-TR-32 29

.

else
raise Cloak Wot_Initislised;
end 1f;

end Dissble_Interrupts:

Set_Interrupt_Perlod procedure

with UWCHECKED CONVERSION:
with VAXELN SERVICES: ase VAXELN SERVICES;
with ¥V _Register_Definitions: use TNV_Ragister_ Definitioms;

separate (XWV11l Clock Manager)

procedure Set_Interrupt Period (Clock Identifier : ia Clock_ID:
Period : in NNV_COUNTER TYPE) is
Devioce_Ticks : KNV_COUMTER TYPE:
for Davice_Ticks uss at (Clock_Array(Clock_Identifier) ¢ 2):
begin
== If spacified clock’s CSR address {s non-mero (i.e.., the clock exists
-- and has been initialized) then set the current wvalue of the clock
== fnterrupt period using two’s complement motation; otherwise raise

~= an exception since the specified clock has not been initialized properly.

if Clock Array(Clock_ldentifier) /= ADDRESS_SERO then
WRITE_REGISTER((164FFTT§ - Period + 1), Device_Ticks):
else
raise Clock Mot_Initialiszed;
end if;

end Set_Interxupt Period:

Generate_Interrupts procedure
with KNV_BRegister Definitions:; use FNV_Register Definitions:

separate (KWV1l_Clock_Manager)

pr d - te_Interrupts (Clock_Ydentifier : im Clock ID) is
Current CSR : KWV_CSR_Record :e= Get_CSR(Clock Array(Clock Identifier)):

-~ If specified clock’s CSR address is non-zero (i.e., the clock existe
~- and has been initialized) then start intexnal ocounter that causes
~= 4interxupts; otherwise raise an exception eince the specified clock has
~- pot been initialized properly.
if Clock Array(Clock_Xdentifier) /= ADDRESS_ZERO then
Current_Cshk.go := TROUR;
Put_CSR(Current_CSR, Clock Array(Clock Identifier)):
else
raise Clock_Wot_Initialised;
end if;

end Generste_Interrupts:

Reset_Interrupt_Flag procedure
with KWV _Register Definitions; use IV_Register Definitions:

separate (KMV1l _Clock_Manager)

CMU/SE!-87-TR-32

precedure Beset_Istarswpt_Vlag (Clock _Idemtifier : im Clock_ID) is
CusTent_CSR : RNV_CSR Record := Gat_CSR(Clock Array(Clock_ldeatifier)):
begia

-= If specified clock’s CSR address is mon-sero (i.e., the clock exists
~~ apnd has been initislised) thea clear counter overflow flag to allow
~= another iatezrrupt to be gensrated; otherwise raise an axception since
«= the specified clock has not been initislised properly.

if Cloock Array(Clock ldentifier) /= ADDBRESS_SERO then

Cuszeat _CSR.ovf_flag := FALSE;

M_at(&t'z-t_al. Clock Arrsy (Clock Xdentifier)):
else

raise Clock_Not_Initialized;
end ££;

and Reset_Interrupt Flag:

Reset_Overrun_Flag procedure

with KWV_Register Definitions; use KHV_Register Definitions;
separate (KWV1l _Clock_Manager)

procedure Reset_Overrun Flag (Clock Identifiar : im Clock_1ID) ia
Current_CSR : KWV_CSR_Racord :e Get_CSR(Clock_Array(Clock Identifier)):

begin
==~ If specified clock’s CSR address is non-sero (i.e., the clock exists
-~ and bas been initiaslized) then clear interrupt overrun flag:
=~ otherwise raise an axception since the specified clock haa
== not been faitialiszed properly.
i clock_lrny(clock_ldontilioz) /= ADDRESS_ZERC then
Current_CSA.flag_overzun:.= FALSE;
Put_CSR(Current_CSR, Clock Array (Clock_Identifier)):
alee
zaise Clock Not_Initialized;
end {f;

end Reset_Overrun Flag;

Start_Counting procedure

with FMV_Register_ Definitions; use FV_Register Definitions:

separate (KV11_Clock_Manager)

proced start_(ting (Clock Identifier : im Clock_ID) is
Current _CSR : KNV_CSR_Record := Get_CSR(Clock Array(Clock_Identifier)):

=~ Xf specified clock’'s CIR address is non-sero (i.e., the clock existe
-~ and has been initislised) them atart the clock’s internal counter:
-- othezrwise reise an exception sinos the specified clock has
-~ mot been {initialiszed properly.
if Clock_Array(Clock_Identifier) /= ADDRESS_SERO then
if (Clock_info (Clock Identifier).Mode = Mode_YTwo or else
Clock_Info(Clock Identifier).Mode = Mode_Three)
then
Curreat_CSR.go := TROUR;
Put_CoR (Curvent CIR, Clock_Array {Clock_1ldenti flex)):
else
raise Invalid_Clock_Mode;

CMU/SEI-87-TR-32

31

0

n o~ eg

end 1£;
ealse
raise Clock_Wot Initislized:
end 1f;

I end Start_Counting;

Read_Counter procedure

with KWV_Register_Definitions: use KNIV _Ragister_Definitions:
separate (KWV1l Clock Manager)

procedure Read_Counter (Clock_Xdentifier : io Clock_ID;
Wumber Of Ticks : out KWV_COUNTER_TYPE) is

Current_CSR : KNV_CSR_Record := Get_CSR(Clock_Array(Clock_Identifier)):

Device_Ticks : KNV_COUNTER TYPEL;
for Devios_Ticks use at (Clock_Array (Clock_IYdentifier) + 2):

begin
~- If specified clock’s CSR address 1s non-zerc (i.e., the clock existse
~- and bas bean initialized) then simulate an esternal event to
~- get current value of the clock’s internal counter written to the
~- BUFFER/PRESET register and then read that wvalue and return it while
-~ the clock continuss to run; otherwise raise an exception since the
-- specified clock has not been initialized properly.
if Clock_Arxay(Clock_Identifier) /= ADDRESS_ZERO then
4f (Clock Info(Clock ldentifier).Mode = Mode Two or else
Clock _Info(Clock_ldentifier).Mode = Mode_Three)
then
Current CSR.st2_int_enable := FALSE;
Current CSR.maint_st2 := TROUE;
fut_CSR(Current_CSR, Clock__h:ny (Clock_!dontifior) ¥

loop
Current _CSR := Got_c!!(clock_kny(Clock_ldonuﬁor))
exit when Current CSR.st2_flag:

end loop;

Wumber Of Ticks := READ REGISTER(Device Ticks):
Current CSR.st2_flag := FALSE;
Put_CSR (Current_CSR, Clock Arrsy(Clock Identifier)):
else
reise Invalid_Clock Mode:
ond if;
else
rsise Clock Wot_Initialized:
end if;

end Read Counter:

Stop_Counting procedure

with KNV_Register Definitions; use FMV_Register_Definitions;
separate (¥MV11_Clock Manager)

procedure Stop _Counting (Clock_ldentifier : iam Clock ID;
Sumber Of Ticks : out KNV_COOWTER TYPE) ie

Current_ CSR : FNV_CBR_Record := Get_CSR(Clock Array(Clock Identifier)):

Devioce Ticks : KNV_COUNTER TYPL:
for Devioe_Ticks uae at (Clock_Array (Clock_ldentifier) + 2):

|@

32 CMU/SEI-87-TR-32

I\

w

i

begin

-~ If specified clock’s CSR address is pon-seroc ({.e., the clock exists
-~ and bhas been initislized) then simulate an extermal event to
== get current value of the clock’s internsl counter writtea to the
-~ SUFFER/PRESET register snd then return that walue:
== othervise ruise an excepticn sinoce the spacified clock has
-= not bean initisliszed properly.
1f Clock_Axrray(Clock_Identifier) /e ADDRESS_SERO then
1f (Clock_Info(Clock ldentifier).Mods = Mode_Two or else
Clock_Info(Clock_ldentifier).Mode = Mode_Three)
then
Current_CSR.st2_int _enable := FALSE;
Currest_CSR.maint_st2 :e TRUE:
Put_CSR (Current CSR, Clock_Array(Clock Identifiaer)):

loop
Current CSR := Got__csn(Clock_kny(clock_ld.ntsﬁcr)) :
exit when Current CSR.st2_flag;

end loop;

¥umber Of Tickse := READ REGISTER (Device Ticka):
Current_CSR.go := FALSK;
Current_CsR.et2_flag := FALSE:
Put_CSR (Current_CSR, Clock_Array (Clock_Identifier}):
else
raise Invalid_Clock_Mode:
end if;
else
raise Clock_Not_Initialized:
end if;

end Stop_Counting:

interrupts_Enabled function
with KWV _Register Definitions; use KWV_Register Definitions;

separate (KMV1l Clock_Nanager)

function Interrupts_Enabled (Clock_ldestifier : inm Clock_ID) return BOOLEAN is
Current CSR : KWV_CSR_Record := Get CSR(Clock_Array(Clock_Identifier)):

begin
== If specified clock’s CSR address is non-zero (i.e., the clock existe
-- and has been initialized) then return a BOOLEAN value indicating
-= whether or not the clock will Generate an interrupt when its internal
== clock overflows; overflow flag: otharwise raise an exception since
-~ the specified clock bas not been initialized properly.
if Clock Array{(Clock Identifier) /= ADDRESS_ZERO then
return Current CSR.int_ovwf;
else
raiee Clock Wot_Initislized:;
and {if;

end Interrupts_Enabled;

Current_Mode function

with DNCEECKED CONVERSION:
with KV_Register_Definitions; use KNV _Register_Definitionms:

separate (FKNV1l Clock_Manager)

function Current_Mode (Clock_rdentifier : im Clock_ID) return Clock Mode is
Current_C3R : KWV_CSR_Record := Get_C3R(Clock_Array (Clock_IXdentifier)):

CMU/SE!-87-TR-32 33

|®

w

- -—

' functicn Coavert_It is mev UNCHEECKED_CONVERSION (OWSIGWED_2, Clock Mode):
E begin

-= 1If speaified clock’s CSR address is mon~sero (i.e., the clock axists
-~ and has been initisligzed) then seturn curzeant clock mode;

' -~ otheswise raise sa exceptiocn since the specified clock has

-- mnot been initialised properly.

: if cloct _Array (Clock _Identifier) /= ADDRESS_SERO then
rt_It (Cu t_CSk. mode) ;
alse
zaise Clock Not_Initialised:
end if;
h end Current_Mode;
Current_Rate function

with mlcncub_couvns JOM
with KWV_Register Defipitions; use JHV_Registar Def initions;

separate (KHV11l_ Clock_MWanager)

function Current_fate (Clock_Identifier : in Clock_ID} zeturn Clock_Rate is
Current_CSR : l'lN CSR hcotd := Get_CSR (Clock_Array (Clock ! Idcntiflor)) :

function Convert_It is new UNCHECKED CONVERSION (ONSIGNED_3, Clock Rate):
begin
-~ If specified clock’s CSR address is pon-zero (i.e., the clock exists
~~ and has been initislised) then return curreat clock rate’
-~ otherwise raise sn exception sinee the specified clock has
-~ gpot been initialiszed properly.
if Clock_Array(Clock_ldentifier) /= ADDRESS_ZRRO then
return Convert_It (Current_CSR.rate);
alse
raise Clock _Wot_Initialigzed:
end 1f:

end Current_Rate;

Interrupt_Period function

with UNCHECKED COWVERSION:
with VAXELN SERVICES: use W_SIMCB;
with KWV _Register Definitions: use FV_Register Definitiona:

sepsrate (KWV11l_Clock_Manager)

function Interrupt_Period (Clock_ ldentifier : in Clock_ID) return RNV_COUNTEIR TYPE is
Dcvio. Ticke : RMV_COUNTER_TYPE:
for Dovie. Ticks use st (clock _Aryay (Clock_Identifier) ¢+ 2);
begin
-~ If specified clock’s CSR address is non-serco (i.e., the clock exists
-~ and has been initislized) then yeturn current value of the clock
-~ interrupt period; otherwise raise an exception sinoce the specified
-= alock has not bean initialized properly.
£ Clock Array(Clock_Identifiex) /e« ADDRESS_SERO then
return READ_BEGISTER (Device Ticks):
else
raise Clock_Not_Initislised:
end Af;

and Intesrrupt_Period;

34 CMU/SEI-87-TR-32

interrupt_Flag_On function

with ONV_Register Defilaitiocns; use WV_Bagister Definitions;
separste (RWV1l_Clock Manager)

function Isterrupt_Flag On (Clock_ldentifier : im Clock_ID) return BOOLEAN is
Cuxremt_CSR : KWV_CSR Record := Get CSR(Clock Array(Clock_Identifier)):

begin
== If specified clock's CSR address is non-sero (i.e., the clock exists
-- and has been initialized) then return current BOOLEAN value of counter
-~ owverflow flag: othexwise raise an exception since the specified clock
== bas not been initialized properly.
4f Clock _Array(Clock_ldentifier) /= ADDRESS_SIRO then
return Current _CSR.ovf flag:
olse
raise Clock Not_ Initialised:
end Af;)

end Interzupt Flag_Om;

Overrun_Flag_On function
with KNV_Register Definitions; use FWV_Register Definitions:

separate (XMV1l_Clock Manager)

functiom Overrun Flag Om (Clock_Identifier : in Clock _ID) returs BOOLEAN is
Current CSR : KWV_CSR_Record :e Get_ CSR(Clock_Array(Clock_Ideatifier)):

== If specified clock’s CSR address is non-zero (i.e., the clock axists
== and has beén initialized) then return current BOOLEAN walue of overrun
-~ f£lag: othezwise raise an exception since the specified clock
~= has not been initialised properly.
if Clock_Array(Clock Ideatifier) /= ADDRESS_IERO then
return Current CSR.flag overrun;
else
raise Clock Not Initialiszed:
end 4f;

end Overrun Flag_Om:

A.e. INS Data Types Package Specification

-1

~=| MODULE NAME: INS_Data_Types

--1

=-={ MODULE TYPE: Package Specification

-=1

=-={| MODULRE PURFOSE:

-] Export Ezecutive global constants and types.

-1

o | er e e e e et e e e v e e e e a e —————————————————
~=| MODUIR DRSCRIPTION:

-1 This package defines the constants and global data types

.= used throughout the ezecutive subsystem.

==

e e e e et e e e e e s e e o ae e mm
CMU/SEI-87-TR-32 35

-= see ead of listing

pragma PAGE;

package INS Data_fTypes is
Maximam Priority : comnstant NATURAL := 15;
Maxisom Tick Value : conatant NATURAL := 34_S60_000;
Maximam Period Valuve : constent NATURAL := S11;
Microseconds_Per_Pick : comstant NATURAL := 2 S560;
sobtype Tick Range e NATURAL range O..Maximum Tick Value:
subtype Period Bange is NATURAL range O..Mexissm Period Value:
subtype Priority_Range is NATURAL range 0. .Maximum Priority:

end INS Data_ZTypes:

REVISION NISTORY

A.f. Clock Interrupt Service Routine

with VAXELN SERVICES:
with CONDITION_RANDLING:
with INS Dats_Types;
with SYSTEM; use SYSTEM;

procedure Timer_ Interxupt_Routine

(Device Registers : in ADDRESS:
Comm_Region : in out INS Data _Types.Executive Communjication Region:
ISR_Context : in VAXELN_SERVICES.ISR_COMTEXT_TYPE) is
Return_Code : COMDITION NANDLING.COMD_VALUE_TYPE:
Temp_Int : INTEGER := O;
begin
for Index2 in 1..110
loop
Temp_Int := Temp_Int + Index2;
end loop;

Comm_Region.Current Tick Wumber := Comm Region.Current Tick Number + 1:
if Comm Region.Current_Tick Wumber >= Comm Region.Next_Schedule_Time then
VAXELN_SERVICES.SIGMAL DEVICE (Status => Return_Code,
Device Wumber => 0,
ISR_Context => 18R_Context);
end if;
end Timer Interrupt Routine;

pragma SUPPRESS ALL:
pragea EXPORT_ PROCEDURE (Timer_laterrupt_Routine):

A.g. Runtime BIT Package Specification

-1

~=| MODULE MAME:
~=1

~=| MODULE TYPK:
-1

~-| MODULE PURPOSE:
This package implements the Runtime Built-In Tests
for the AEST INS simulator program.

Rantime_ B8IT

Package Specification
~=1

36

CMU/SE-87-TR-32

rl-l-.d..; POUPP

\‘

b |

-] MODULE DRSCRIPTION:

-] This peckage implemeats the Runtime Suilt-In Tests
' -—f for the AZSY IMS simulstor progres.

-1

-

==| SEVISION EISTORY: -~ see end of listing

pragms PAGE;

package Runtime BIT is

‘ task Rumtime BIT Processor is
entry Activate: ~= called every 1000 msec by the dispatcher

end Runtime BIT_Processor;
procedure Runtime Tests; -- implements the tests

end Runtime BIT:

REVISION HISTORY

A.h. Runtime BIT Package Body

-\
--| MODULE MAME: Runtime BIT
-1
==| MODULE TYPK: Package Body
-1
~=| MODULE PURPOSE:

. -1 This package implements the Runtime Built~In Teats
-t for the ARST INS simulator program.
-1
-1
~=| WODULE DESCRIPTION:
-] This package implements the Runtime Built-In Tests
-] for the ARST INS simulator program.

. --{ REVISION NISTORY: <~ ses end of listing

pragma PAGE:
with Load Comtrol:
peckage body Runtime BIT is

L task body Runtime BIT_Processor is
begin
loop
scospt Activate; ~= called every 1000 msec by the dispatcher
load_Control .Busy Wait (50):
end loop;
ond Runtime_BIT_Processor;

4 procedure Runtime Tests is
begin
aull; ~- implemeants the tests
end Runtime Tests;

end Runtime BIT;

REVISION NISTORY

CMU/SE1-87-TR-32 37

-=| MODUIE WMAME: Motiocn_Simulator
-=| MODULE TYPE: Package Specification

-~} MODULE PURPOSE:

-1 2his package implements the various motion simulation
bl | calculations that are the core of the AEST INS

Lt | simulator program.

--| MODULE DESCRIPTION:

-1 Thie package implements the various motion simulation
-1 calculations that are the core of the ARST INS
- simulator program.

~=-{ REVISION HISTORY: ~~- seea end of lieting

package Motion_Simulator ias

procedure Update Attitude and Heading: -- called by the clock ISR every 2.56 =ms

task Ship Velocity Updater ie
entry Activate; <~ called by the dispatcher avery £0.96 msec
pragma PRIORITY (8):

end Ship Velocity Updater:

task Ship Position_Updater is
eniry Activate; -- called by the dispstcher every 1300.0 msec
pragma PRIORITY (1)

end Ship_Position Updater:

ond Motion_Simulator:

REVISION HISTORY

A.j. Motion Simulator Package Body

-=1

~=| MODULE WAME: Motion Simulator
==

--| MODULR TYPE: Package Body

-1

-~| MODULE PURPOSK:

--q This package implements the various motiocn simulation
-] calculations that are the core of the AXST INS
-1 simulator progras.

-1
-=| MODULE DRSCRIPTION:

-1 This peckage implements the various motion simulstion
el | oslculations that are the core of the ARST INS
== simuletor progrea.

e |
==
-=| REVISION EISTORY: -~ see end of listing
-1

pragma PAGE;

38 CMU/SEI-B87-TR-32

| _]

with Load Comtrol;
with Task Manager:; .

package body Motioa Simulstor is

procedure Update_Attitude and Beading is
begin

sull;
end Update_Attitude_and Eeading:

task body Ship Velocity Updater is
begin
loop
acoept Activate;
Load_Control.Busy Wait (40): -- 4 milliseconds
end loop;
end Ship Velocity Updater:;

task body Ship_Position_Updater is
bagin
loop
acospt Activate;
* load_Contrxol.Busy Wait (250): -- 25 milliseconds
end loop:;
end Ship Position Updater:

end Motion_Simulator;

REVISION HISTORY

A.k. Comms Handler Package Specification

peckage Comms_Handler is
procedure Time Out;

task Attitude Periodic_Message_Sender is
entry Activate;
pragms PRIORITY(7):

end Attitude_Periodic _Message_Sender;

task Navigation Periodic_Message_Sendar is
antry Activate:
pragma PRIORITY (4):

end Mavigstion Periodic_Message_Sender;

end Comms_Handler;

A.l.Comms Handler'Package Body

with Load Control;
with Task_MansQer; use Task Manager:

peackage body Comms_Hasndler is

procedure Time Out is
begin

aall;
end Time_Out;

task body Attitude_Periodic Nesssge_Sender is
begin
loop
aoccept Activate;
Load_Control.Buey Wait (100): -- 10 milliseconds
end loop;
end Attitude Periodic_Message_Sender:

CMU/SEI-87-TR-32

39

A.

task body Navigeticn_Periodic Message_Sender is
begia
loop
acoept Activate;
Loed _Control.Busy Wait(200): -- 20 millisecoads
end loop;
end Bavigation_ Periodic Messsge Sender;

end Comms Nandler:

m. Screen Area Handler Package Specification

package Screen Ares_fandler is

task PReriodic_Status Display Processor is
antxy Activate; -- called evary 1000 msec by the dispatcher

pragms PRIORITY(3):
end Periodic_status Display_ Processor;

end Screen_Area_Handlex;

A.n. Screen Area Handler Package Specification

>

with Load_Costrol:
package body Screen_Ares_Randler is

task body Periodic_status_Display Processor 1ie

begin
loop
acoept Activate: -~ called every 1000 msec by the dispatcher
Load_Control.Busy Wait(1_000); -- 100 milliseconds
and loop;

end Periodic_Status_Display_ Processor;

end Screen_Area_landler;

0. Activation Queue Manager Package Specification

=-=1
~—| MODULE MAME: Activation_Queue Manager (AQM)
|

--| MODULR TYPE: Package Spacification

==

--| MODULE PURPOSE:

-=1 Implement task activation queue manager.
==
-1
~-} MODULE DRSCRIPTION:

--| This package provides the necessary data types,

--1 procedures, and axcsptions for implementing e time

-1 ordered activation queue. The package only supports
=] one such queus whose implamentstion detaile are hidden
L | within the package body.

-=
~~1
-=] BEVISION EISTORY: ~- see end of listing
~}

pragme PAGE:

with Task Manager:
with INS Dats Types:

package Activation_Queus Manager is

40

CMU/SE!-87-TR-32

subtype Priority Range is INS Dats_fTypes.Priority Range;

subtype Activation _Time Range is INS_Data ' «Tick_Range;
subtype Activationm Period _Sange is INS_Deta Types.Period Range:

subtype Task_ID_Type is Task Manager.Task ID Type:
type Activation Mode_Type is (Single _Shot, Periodic, Time Out, No_Op):

type Task Activatios Record is record

Task_ID : Task_ID_Type:
Activatiocs_Rexied : Activetion_ Period Range:
Activation Time : Activaetion_Time Range:
Astivetioco Pricrity ¢ Priority Range;
Execution_Priority : Priority Range;
Activation Mode t Activation_Mode Type:

procedure Insert Activation Record (Record ID : in %Tssk_Activation Record:
Waxt_Schedule_Time : out Activation Time Range):

procedure Get_Activstion_Record (Record_ID
Next _Schedule_Time

out Task_Activation Record;
out Activation _Time_Range):

procedure Delete_Activation Racord (Task_ID : in Task_ID Type):

end Activation_Queue_Manager:

REVISION HISTORY

A.p. Activation Queue Manager Package Body

-1

=-=| MODULE NAME: Activation_Queue_Manager
-1

-=-| MODULE TYPE: Package Body

-1

-~| MODULE PURPOSE:

-1 Implement task activation queue manager.

-=1
=-|{ MODUIE DESCRIPTION:

-1 This package supports the implementation of a time

-1 ordered task activation queue and its associsted

- interfaces exported in the package specification.

--i The activation queue is maintained as s static srray of

-=| activation records (ARs) ss defined in the package specification.

-1 The ARs are sever moved from their initial position io the array and
-=} one special array element is reserved for the AR of the

-—4 Cosmunications Controller task, which is called when a time-out has
- eaxzpired. The AOQM mainteine information regarding the mext task to be
-\ scheduled and when to schedule it by performing a linesr search of

- the array upon each insert and fetch operstion. When an AR is

-] t d (1.e., tak off the queus) to the Dispatcher, its activation
-1 moda value is checked by the AQM: if it represents a periodic task, a
-1 new activation time is computed, and the AR gets re-inserted into the
-] quene.

-1
-=| REVISION HISTORY: ~- see end of lieting

pragna PAGE;
with Task Manager: use Task Mansger:

packsge body Activation Queue_Mansger is

Next_Activation Time : Activation_Yime_Range := Activation_Time_Range’IAST: _ﬁ
Next_Task_To_Schedule : Task_ID_Type: _—1
Activstion Records : array(Tssk_ID_Type) of Task Activation Record;

CMU/SEI-87-TR-32 a1

~= Imsert the specified ARs faformaticn imto the AR Table

-

procedure Insext Adtivation_Record (Recoxd_ID

: ia Task_Activation Record:
Sext_Schedule_Time : out Activatiocn_Time Range) is
begin
Activation_Records (Record ID.Task_ID) := Record ID;
ig Imcd Im uttmio- Time < Sext mtntlon Time and then
Record_ID.Activetion Mode /= No_Op then
Rext_Activation Time := Record ID.Activation Time;
Next_ZTask_To_sSchedule := Record_ID.Task_ID;
end if;
Bext_Schedule_Time := Next_Aativation Tims;
end Insezt_Activation Record:

————

~- Get paxt AR from the Activation Queue. BRe-schedule any tasks with
~- same activation time as the one taken off the queue.
procedure Get_Activation_Record (Recoxd_ID : out Task Activation_Record:
Mext_schedule Time : out Activation Time Range) is
begin
Becord_ID := Activation Records (Wext_Task_To_sSchedule);

PP —

=~ Xf current task is periodic, then recompute next activation for
-~ task and then re-insert it into the activation queuve.
1f Activation Records (Next_ Task_To_Schedule) .Activation Mode = Periodic then
Activation } Records (Maxt 'rnok To _Schedule) .Activation ! Time :=
mlntlon Records (Ict h-k To_Schedule) . Activation _Time +
Activation ! , Time hm(mtntiow _Records (Mext ‘X‘.lk_?o_‘chodulo) -Activation_Period):
end if;

~~ U¥ind next task to he acheduled.
Mext Activation Time := Activation_Records(Task_ID Type’FIRST).Activation Time:
Wext_Task_To_Schedule := Task_ID_Type’ FIRST:

for Index {n Task_ID_Type’SUCC(Task_ID_Type’'FIRST)..Task_ID_ fType’LAST
loop
if Activation_Records (Index) .Activation Time < Next Activation Time and then
Activetion_Records (Indaz) .Activation Node /= No_Op then
Wext_Activation Time := Activation_Records(Index).Activation_Tima;
¥Wext_Task To_ Schedule := Index;
end 1if;
end loop;

Next_Schedule Time := Next Activation Time;

end Get_Activation Record;

-- Mazk AR sssocisted with Task_ID as not avsilable for scheduling.
-= Ite slot will most likely be used at a later date (e.g., timeouts).
procedure Delete_Activation Record (Task_ID : in Task_ID Type) is
begin

Activation_Records (Task_ID) .Activation Mode := Mo Op:
end Delete_Activation Record;

end Activation Queue Manager;

BREVISION HISTORY

42 CMU/SEI-B7-TR-32

.

A.q. Task Manager Package Specification

-

~~| MODULR NAME: Task Mansger

-=| MODULR TYPE: Package Specificstice

b | This peckage provides an interfsos to initialize the task activation
b | quese sl sta.c the digpatcher of the ARST INS simulstoxr program.

~-| MODULE DESCRIPTION:
-] This peckage provides the

2

-1 to initialize the task activation qnm start the task dispatcher,
b | enable/disable periodic taske, and support time-outs for base

-1 level taske.
-=1

-=~| REVISION HISTORY: -- see end of listing

pragma PAGE;
with INS_Data_Types:
package Task_Nanager is

-- Imported data types

subtype Activation Time_Range is INS_Data_ Types.Tick_ Range:
subtype Activation Period Range is INS_Dats_Types.Period_Range;

type Task_ID_Typs is
4 8hip Velocity Updater,

Attitude_Periodic Message_Sender,
l.vig-tion Periodic_Message_ Sender,
Periodic_Status_Display_Processor,

Runtime BIT_Processor,
Ship_Position Updater,
Coams_Controller

):

subtype Periodic_Task _ID_Type is Task_ID_ Type range
Ship_Velocity Updater..Ship Position_Updater;

subtype Timeout Task_ID_Type is Task_ID Type range
Comms_Controller..Cosms_Controller;

procedure Initialize_Activation Queue;

procedure Activste Dispatcher;

function Task_Is_Enabled (Task_ID :
procedure Eoable Task (Task_ID :
procedure Dissble Tssk (Task_1ID :

procedure Request_Time Out (Tssk_ID
Time Period

procedure Cancal Time Out (Task_ID

in Periodic_Task_ID Type) return

in Pariodic_Task_ID_Type);

in Perjodic_Task_ID_Type):

in Timeout_Task_ID_ Type:
in Activation_Period_Range):

Timecut_Task_ID_Type):

Dispatcher Activation Error : EXCEPTION:

ond Task Manages:

REVISION KISTORY

BOOLEAN

CMU/SEI-87-TR-32

43

e

SR)

A.r. Task Manager Package Body

-1
~=| MODULE WAME: Task_Managexr

-=1

~=-| MODULE TYPE: Package Body

-1

~-| MODULE PURPOSE:

-1 Implemeat & periodic task dispstcher.
had |
~=1

-=1 This package body implements s task dispatcher
-] that gets and re-inserts task sctiwvation records
~=1 from and onto the activation queue. Tha dispetcher

~=] waits for signale from a resl-time clock that is

--1 generating interrupts every 2.56 milliseconds.

==

-_‘ ———
~-| REVISION HISTORY: -- see end of lieting

__' ------- -

pragma PAGE;

with Runtime BIT:

with Comms Handler:

with Motion_ Simulator;

with XWV11l_Clock_Manager;
with Screen_Area_Handler;
with Activation Queue Manager:

with SYSTEM: use SYSTEM;
package body Task_Mapager is

package RTB renames Runtime BIT:

package COM renames Comme_Handler;

package MOS renames Motion Simulstor:

package SAH] _Area Handler;
package AQN renames Activation_Queue Manager:

cnmmmm————

-- Imported Data Types

subtype Clock ID is KWV1l_Clock_Manager.Clock_ID;
subtype DEVICE TYPE is XwV1l Clock Manager.DEVICE_TYPE;
subtype KNV_COUNTER TYPE is KWV1l _Clock_Manager.KNV_COUNTER_TYPE:

type Task_State _Type is (Disabled, Ectabled):

Periodic_Task State : array (Periodic_Task_ID_Type) of Task_State Type :=

(ship_Velocity Updster => Tnabled,
-- Attitude Periodic Massage Sender => Disabled,
- Mavigation_Periodic Massage Sender => Dissbled,
Attitude_Pericdic_Message_Sander > Enabled,
Navigation Periodic Message_Sender => Enabled,
Periodic_Status _Display_Processor => Enabled,
Runtime BIT Processoxr => Enabled,
Ship_Poeition Updater => Enabled)’
Clock_IPL : UNSIGWED LONGWORD:
Comm_Region Address : ADDRESS;
Schedule At _Tick Sumber : Activation Time Range :=

Activation_time_Range’LAST:

-~ Looal Subprograms and taske

————— . ——

procedure Update_WNext_Schedule_Time is separate:

function Current_Tick_Numbar return Activation Time_Range is saparate:

44

CMU/SE!-87-TR-32

procedure Activate_Task (Task ID : ia Tssk_ID Type:
Missed_Deadlise : out BOOLEAN):

procedure Time_Out_Task (Task_ID : in Timeout_Task_ID Type):

task Dispatcher is
entxy Activate (Clock_Identifier
Clock_Device_ID
pragms PRIOCRITY(9);
and Dispstcherx:

in Clock ID:
in DEVICE_TYPE):

task body Dispetcher is separste;

L TP

-- Exported BSubprograms

procedure Initialize Activation Queue is separate;

procedure Activate_Dispatcher is separste:

function Task_Is _Cnabled (Task_ID : in Periodic_Task_ID_ Type)
return BOOLEAM is

begin
return Pariodic_Task_State (Task_ID) = Rnabled;

end Tssk_Is_Ensbled:

procedure Enable_Task (Task_ID : in Periodic_Task_ID_Type) is
begin

Periodic_Task_State(Task_1ID) := Ensbled:
end Enable_Task:

~= Disable the specified task.
procedure Disable_Task (Task_ID : in Periodic_Task_ID Type) is
begin
Periodic_Task_State(Task_ID) := Disabled:
end Disable_Taak;

~= Activate the specified task.
procedure Activate_Task (Task _ID : in Task_ID_Type;
Missed_Deadline : out BOQLEAN) ie
begin
Missed_Deadline := FALSE;
4f Task_ls_Ensbled (Task_ID) then

case Task_ID i
when Ship Velocity Updater w>
select
MOS.8hip_ Velocity Updater.Activate;
elee
Missed_Deadline := TRUE:
end celect:

when Attitude_Periodic Message_Sender =>
select
“.&titm_!utoue_bclm~lond¢t.Aalv.t.:
olse
Missed_Deadline := TRUE;
end select;

when Navigation Pericdic_Message_Sender => _‘q
select

CMU/SEI-87-TR-32 45

COM.Mavigation Periodic Message_Sender.Activate;
olee

Missed Desdline := TRUR:
end salect;

when Periodic Status_Display_ Processor =>
select
SAN.Periodic_Status_Dieplay_Processor.Activate;
elee
Missed_Deadline := TRUE;
end select;

wheno Runtime BIT Processor=>
seleat
REB.Runt ime BIT_Processor.Activate;
else
Missed Deadline := TRUE;
end select;

when Ship Position_Updater =>
select
MO8 ._Ship Position Updater.Activate;
else
Missed_Deadline := TROE;
end select;

whea others =>
aull;

end case;

else
aull;
end if;

end Activate_Task:

-- Time Out the specified task.
procedure Tima Out_Task (Task ID : ipn Timeout_Task_ID Type) is
begin
COM.Time _Out:
ond Time Out_%Task:

procedure Reaquest_Time Out (Taek_ID : in Timeout_Task_ID_Type:
Time_Period : in Activation Period Range) is
Next_Time : Activation_Time Range := NATURAL'FIRST;
begin

AQM. In.ox't_lctivntlon_l.eotd (
(Task_ID, Activation Time Range (Time_Period),
Activation Time Range (Time_Period) ¢ Current_ Tick_Number,
10, 10, AQM. Time_Out), Schedule_At_Tick MWumber):

end Request_Tims Out;
procedure Cancel Time Out (Task_ID : Timeout_Task_ID_Type) is
bagin
AQM.Delete Activation_Record (Task_ID):
end Cancel _Time Out:

end Task_Manager:

REVISION NISTORY

Load Control Package Specification

with XWV1l Clock Wanager:

46 CMU/SEI-87-TR-32

K"

package load_Control is

subtype Clock _ID is FNV11l_Clock Manager.Clock_ID;
procedure Initislise (Clock Identifier : im Clock_ID):
procedure Read_Load Factor;

procedure Busy Wait (Time Period : in POBITIVE):

end Losd_Control;

Load Control Package Body

with Text IO;
package body Load Control is

type load Factor_Percentage is delta 0.05 range 0.0..10.0;

My Clock_ID : Clock_ID:

Load_Tactor : Load_Factor_Percentage := 1.0;
Calibration : constant Load Factor_Percentage :~ 0.7S;
Factor ¢ Load Factoxr_Percentage:

Temp : BOOLEAN:
package Load Factor_IO is new Text_IO.Fized IO (Load Factor_ Percentage):

procedure Initialize (Clock_ldentifier : in Clock_ID) is
begin

My _Clock_ID := Clock_Identifier:
end Initialize;

procedure Read_Load Factor is
Factor_File Name : constant STRING := »25::pe:(borger]load factor.inp";
Factor_TFile : Taxt_IO.fILE TYPE:

use Text_IO:

begin
Open (Factor_File, In File, Factor_File_Name):
Load_Factor_X0.Get (Factor_File, Load_Factor):
Factor := load_Factor_Pexcentage (Calibration * Load_Factor):
Close (Factor_File):

end Read Load Factor;

procedure Busy Wait (Time Pariod : im POSITIVE) is

begin
for Index in 1. INTEGER(Time Period * Factor)
loop
Temp := KWV11l Clock_Mansger.Interrupt_Flag On(My_ Clock_ID):
end loop;

and Busy Wait:

end Load_Control;

Activate Dispatcher procedure

with TRXT_IO;
witk Load_Control:
with Timer Interzupt Routine;

separste (Task_Manager)

procedure Activate Dispatcher is
My_Clock_Name conatant STRING := “KNV11~;

e e

My_Clock_ID Clock_ID;
My_Clock_Device : DEVICE_TYPE;
CSR_Address : ADDRESS;
Poriod : FNV_COUNTRR _TYPE := KNV_COUNTER_TYPE (2 560):
CMU/SE!-87-TR-32 47

wse TRXT_ IO, INS _Deta_Types, SWV1l Clock Manager;

begin
== ZIaitialise the clock to operste {n mode one at a LMNE rete.
== The Iaterrupt fexzvice Routine is "Timar_Intesrupt_Routine".

Initialize (Clock Mame => My_Clock_Mame,

Clock_Identifier => My Clock ID,

Mode > Mode_One,

Rate => Rate_lMH:,

Vector_Number - 1,

Sarvics_Routine => Pimer Interrupt_ Routine’ADDRESS,
CSR_Address «> CSR_Address,

Clock_Priority => Clock_IPL,
Cosmunicstion_Begion_Size => Rzscutive Comsunication_Region’ SIZE,
Communication Region_Address => Comm Region_Address,

Deviocs _Object => Ny_Clock Device };

-- Update naxt schedule time communication region.
-- Start cuzrent tick number st 0 in communication region.
declare
Cosm_Region : INS Dats_Types.Ezecutive Communication Region;
for Comm Region use at Comm Region_Address;
begin
Coam_Region.Current_Tick_Wumber := 0;
Cosm_Region.Wext_Schedule_Time := Schedule At_Tick Wumber;
end;

)

-- Properly initialise load control

Losd_Control .Initialise(My Clock_ID};
Losd_Control.Read_lLoad_Factor;

Dispatcher.Activate (My_Clock_ID, My Clock_Device):

-- Start generating periodic interrupts

Generate_Interrupts (My Clock ID):

exoception
when Initialization Error =>
Put_Line ("Error during clock initialization.*);
raise Dispatcher_Activation Error;

when Clock Mot _Initialised =>
Put_Line ("Invalid clock identifier."):
raise Dispetcher_Activation_Error;

wvhen others =>
Put_Line ("Unexpected exception raised back to Dispetcher Activate Dispatcher."):
raise Dispetcher Activation_Rrror;

end Activate_Dispatcher;

Initialize Activation Queue procedure q

48 CMU/SEI-87-TR-32

separate (Task_Manager)

procedure Iaitialize_Activstios Queue is
Next_Time Activation Time Range := FNATURAL’ FIRST;
‘ Activation Records : coastast array(Task _ID Type)
of AQM.Task _Activstion Recoxd :=
((Ship_Velocity_Updater, 16, 16, 8, 8, AQM.Periedic),
(Attitude_Periodic_Messsge_Sender, 24, 24, 7, 7, AQM.Periodic),
(Wavigation | Periodic : Mesaage_Sender, 384, 384, 4, 4, AQM.Periodic),
(Pexiodic_Status Display_Frocessor, 390, 390, 3, 3, AQM.Periodic),
(Runtime BIT Processor, 391, 391, 2, 2, AQM.Periodic),
(lhip ’“Ltioll _Updater, 508, S08, 1, 1, AQ.Pariodic),
® (Comms_Contsoller, 0, 0, 10, 10, AQM.Wo_Op) };

Ty

begin

for Index in Task_ID Type
loop
AQ. Insert_Activation_ Record (Activation Becords(Index),
Schedule_At_Tick Wumber):
end loop:;

end Initialize_Activation_Queus;

Dispatcher task
with KWV1l_Clock Msnager: use KWV1l Clock Manager;
with VAXELR SERVICES:
13 with Text_ IO;
separate (Task_Manager)

task body Dispatcher is

My_Clock_1ID : Clock_ID:
My_Clock_Device_ID : DEVICE_TYPE:
Current_AR : Task_Activation_Record;
. Task_Missed Deadline : ROOLEAN;
begin

accept Activate (Clock_ID : in Clock_ID;
Clock_Device_ID : in DEVICE_TYPE) do
My_Clock _ID := Clock_ID;
® My_Clock_Device_ID := Clock Device ID:
end Activate;

-= Yoop snd dispatch a nev task for each clock interrupt

———————————

B]

~- Wait for a signal device (kernel service) call from the
‘. ~- PTimer Interrupt Routine and reset interrupt flag to allow
-=- more interrupts to be generated.
VAXEIN SERVICES.WAIT ANY (Valuel => My Clock Device ID);
Raset_Iaterrupt Flag(y_Clock ID):
Tick_Number := Tick Jhumber 4 1;

1f Tick Rumber >= Schedule At_Tick_Number then
L -= Get next sctivation record (vhose task is to be scheduled) from
== Activetion Queus and take the appropriate actiom.

Get_Activetion Record(Curreat AR, Schedule At Tick Mumber);
case Current AR.Activatiocn Mode is

when Periodic | 8ingle_Shot =>
‘ Activate_Task (Current AR.Task_ID, Task Missed Deadline):
if Task lhcod Duduno then
Text IO Put (i‘aak ID Wpo IMAGE (Current AR.Task_ID) &

CMU/SEI-87-TR-32

49

* Missed deadline.");
Toxt_J0.Put_Line(" Tick §: " & INTECER' IMAGK (Tick_Wumber)):
end Af;

vhen Time Ouwt «>
Time_Out_Task (Current AR.Task_ID):

when othars =
sull;

end oase;
end if;
end loop;

Ba_Initislize(My_Clock_ID, Mode_fero, Stop):

end Dispatcher;

A.s. Main Program

with Task_Manager:

procedure INS is

begia
Task_Manager.Initialize Activation Queus;
Task_Manager.Activate Dispatcher:

end INS:

50 CMU/SEI-87-TR-32

UN
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1e. REPONT SECURITY CLASSIFICATION

1. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
Ze. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A APPROVED FOR PUBLIC RELEASE
20. DECLASSIFICATION/DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED
N/A

4 PEARFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SE1-87-TR-32

5 MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-87-195

6. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL
(1f applicablc)
E

E_ENGINEERING INSTITUTE] SEI

7. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE

6c. ADDRESS (Cily. State and 2!P Code)
CARNEGIE MELLON UNIVERSITY

PITTSBURGH, PA 15213

0. ADDRE’SS (City. State eand ZIP Cade)
ESD/XRSI

HANSCOM AIR FORCE BASE, MA 01731

84. NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(1] applicobic)

SEI JPO

9. PAOCUREMENT INSTAUMENT IDENTIFICATION NUMBER

F1962885C0003

8¢c. ADDRESS (City, State and ZiP Code}

10. SOURCE OF FUNDING NOS.

CARNEGIE MELLON UNIVERSITY

SOFTWARE ENGINEERING INSTITUTE JPO
PITTSRURGH, PA 15213

VR AT TON,

T AL AL

PROGRAMMING A REAL-TTIME PERIODIC| TASK DISPATCHER USING

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

N/A N/A N/A

] LN 1Y 1-;
12. PEASONAL AUTHORI(S)

MARK W. BORGER

13s. TYPE OF REPORT
FINAL

13b. TIME COVERED
FAOM TO

18 DATE OF REPORT (Yr.. Mo., Day)
DECEMBER 1987 f2

15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

17. COSAYT) CODES

[FIELD GROUP

18. SUBJECT TERMS (Co

SuB. GR.

niinue on reverse if nccessary and identify by block number)

[‘9. ABSTRALT (Continue on reverse if necessary and 1dentify Sy block number)

Abstract.

individual tasks is less than the clock cycle fre
implementation?

The purpose of this paper is to provide the reader with some technical
information and observations, Ada source code, and measurement results based on
experimentation with respect o developing a real-time periodic task dispatcher in Ada.
The results presented here are specific to a uVAX-II/VAXELN 2.3 target system, the
VAXELN 1.1 Ada compiler, and a KWV11-C programmable real-time clock. Specifi-
cally, these results provide answers 10 the question: How can one achieve the effect of
scheduling a set of periodic Ada tasks when the runtime frequency of some of the

quency supported by an Ada runtime

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLAsSIFIED/UNLIMTED XX same as rReT.) pr1ic users 53

2. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22a. NAME OF RESPONSIBLE INDIVIDUAL
KARL SHINGLER

22L TELEPHONE NUMBER
include Arca Codes

(£12) 268-7630 SE1 JPO

22¢ OFFICE SYMBOL

DD FORM 1473, 83 APR

E€EOITION OF 1 .,Aat 13 1L DAGSOLETE

SECURITY CLASSIFICATION OF

MET TS SN

UNLIMITED, UNCLASSIFIil

—W—”[

